Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
b2 = ac
=> \(\frac{a}{b}=\frac{b}{c}\)
c2 = bd
=> \(\frac{b}{c}=\frac{c}{d}\)
d2 = ce
=> \(\frac{c}{d}=\frac{d}{e}\)
=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\)
=> \(\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{abcd}{bcde}=\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}=\frac{a}{e}\)
=> Đpcm
Ta có :
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(d^2=ce\Rightarrow\frac{c}{d}=\frac{d}{e}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\)
\(\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}=\frac{a}{e}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{e}=\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Vậy \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
-Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk;b=dk\)
-Gọi a=bk;c=dk ta có:
\(\frac{\left(a-c\right)^4}{\left(b-d\right)^4}=\frac{\left(bk-dk\right)^4}{\left(b-d\right)^4}=\frac{k^4\left(b-d\right)^4}{\left(b-d\right)^4}=k^4\)(1)
\(\frac{5a^4+7c^4}{5b^4+7d^4}=\frac{5b^4k^4+7d^4k^4}{5b^4+7d^4}=\frac{k^4\left(5b+7d\right)^4}{\left(5b^4+7d^4\right)}=k^4\)(2)
-Từ (1)và(2)=>\(\frac{\left(a-c\right)^4}{\left(b-d\right)^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(Điều cần chứng minh)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau (giả sử tất cả các mẫu số trong phép biến đổi đều khác 0)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(\frac{a-b}{c-d}\right)^4=\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{a^4+b^4}{c^4+d^4}\)