Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai trả lời:nhanh nhất,đúng nhất,hay nhất,đầy đủ nhất thì mk k cho nha
Các bạn trả lời nhanh giùm mk
Cảm ơn các bạn
3m2+m=4n2+n
=>(m-n)(4m+4n+1)=m2(1)(phân tích ra là về cái ban đầu nhé)
Gọi d là 1 ước chung của m-n và 4m+4n+1
=>(m-n)(4m+4n+1) chia hết cho d.d=d2
Từ (1) =>m2 chia hết cho d2
=>m chia hết cho d
Mà m-n cũng chia hết cho d => n chia hết cho d
=>4m+4n+1 chia d dư 1(vô lí vì d được giả sử là ước của 4m+4n+1)
=>4m+4n+1 và m-n nguyên tố cùng nhau
khi phân tích a hoặc b có thừa số nguyên tố p với mũ lẻ mà 2 số này nguyên tố cùng nhau nên số còn lại không chưa p =>m2 bằng tích của p với 1 số khác p.Mà m2 là số chính phương nên điều trên là vô lí
=>m-n và 4m+4n+1 phải cùng là số chính phương(ĐPCM)
Hơi khó hiểu nhưng đúng đó Đây là mình cố giải thích cho bạn chứ thực ra k có dòng giải thích dài dài kia đâu
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
giải :
Ta có : 3m2 + m = 4n2 + n
tương đương với 4(m2 - n2) + (m - n) = m2
hay là (m - n)(4m + 4n + 1) = m2 (*)
Gọi d là ước chung lớn nhất của m - n và 4m + 4n + 1 thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + 1 chí hết cho d.
Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d.
Từ 8m + 1 chia hết cho d và m chia hết cho d ta có 1 chia hết cho d => d = 1.
Vậy m - n và 4m + 4n + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương.
a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)
hay \(n\in\left\{0;1;4\right\}\)
\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)
Câu a)
Giả sử k là ước của 2n+1 và n
Ta có
\(2n+1⋮k\)
\(n⋮k\)
Suy ra
\(2n+1⋮k\)
\(2n⋮k\)
Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)
Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau
Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Câu c)
Đang thinking .........................................
LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!