K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Ta chứng minh như sau: 
+ Khi a và b là 2 số nguyên dương chia hết cho 3, thì tồn tại 2 số nguyên dương p và q sao cho: 
- a = 3 p và b = 3q. Lúc đó: a^ 2 + b^2 = (3p)^2 + (3q)^2 = 9.p^2 + 9.q^2 = 3[ 3.p^2 + 3.q^2] = 3.H, với H là số tự nhiên.

Suy ra: a^2 + b^2 là số chia hết cho 3

30 tháng 11 2017

1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!

30 tháng 11 2017

Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé

Ta có: (a^5-a)= a(a^4-1)

= a(a^2-1)(a^2+1) 

= a(a-1)(a+1)(a^2+1) 

= a(a-1)(a+1)(a^2-4+5) 

= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1) 

Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

=> a^5-a chia hết cho 30  

=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30 

Mà a+b+c chia hết cho 30 

=> a^5+b^5+c^5 chia hết cho 30

18 tháng 8 2018

Ta có:

\(a^3+b^3-\left(a+b\right)\)

\(=a^3+b^3-a-b\)

\(=a\left(a^2-1\right)+b\left(b^2-1\right)\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)

\(a\left(a-1\right)\left(a+1\right)\) là tích của ba số tự nhiên liên tiếp

\(\Rightarrow a\left(a-1\right)\left(a+1\right)\) chia hết cho 3

\(b\left(b-1\right)\left(b+1\right)\) là tích của ba số tự nhiên liên tiếp

\(\Rightarrow b\left(b-1\right)\left(b+1\right)\) chia hết cho 3

\(\Rightarrow a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)\)chia hết cho 3

\(\Rightarrow a^3+b^3-\left(a+b\right)\) chia hết cho 3

\(a^3+b^3\) chia hết cho 3

\(\Rightarrow a+b\) cũng chia hết cho 3

\(\RightarrowĐpcm\)

13 tháng 9 2018

tại sao viết a^3+b^3-(a+b)