Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4
b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)
b: =>n^2+4n-2n-8+14 chia hết cho n+4
=>\(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)
c: Sửa đề: \(n^4-2n^3+2n^2-2n+1⋮n-1\)
=>\(n^4-n^3-n^3+n^2+n^2-n-n+1⋮n-1\)
\(\Leftrightarrow\left(n-1\right)\left(n^3-n^2+n-1\right)⋮n-1\)(luôn đúng)
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
n^2.(n+1) + 2n.(n+1)
=(n+1). (n^2 + 2n)
= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)
n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.
=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.
Mà (2,3) = 1
=> n(n + 1)(n + 2) chia hết cho 6
=> n2.(n+1)+2n.(n+1) chia hết cho 6
Chứng minh rằng (n thuộc Z)
a) n2(n + 1) + 2n(n + 1)
= (n + 1)(n2 + 2n)
= n(n + 1)(n + 2) \(⋮\) 6 (với mọi \(n\in Z\))
Vậy n2(n + 1) + 2n(n + 1) chia hết cho 6 (với mọi \(n\in Z\))
b) (2n - 1)3 - (2n - 1)
= (2n - 1)[(2n - 1)2 - 12]
= (2n - 1)(2n - 1 + 1)(2n - 1 - 1)
= 2n(2n - 1)(2n - 2)
= 4n(2n - 1)(n - 1) \(⋮4\left(1\right)\)
Mà (2n - 1)(n - 1) = (n + n - 1)(n - 1) \(⋮2\left(2\right)\)
Từ (1) và (2) suy ra: (2n - 1)3 - (2n - 1) chia hết cho 8 (với mọi \(n\in Z\))
Sai rồi ở câu a.