K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

http://olm.vn/hoi-dap/question/128905.html

6 tháng 2 2016

suy ra (a+b+c)^2=2015

suy ra (a+b+c)^2=

suy ra ko tồn tại

 

15 tháng 1 2020

Giả sử có các số nguyên a,b,c sao cho a2 + b2 + c2 = 2015 (1)

Do tổng ba số a2 ; b2 và c2 là lẻ nên ta có 2 trường hợp:

+) TH1: Có 2 số chẵn , 1 số lẻ

Do vai trò của a,b,c là như nhau nên giả sử a2 và b2 chẵn ; c2 lẻ hay a,b chẵn và c lẻ. Đặt a = 2x, b = 2y , c = 2z + 1

\(\Rightarrow a^2+b^2+c^2=\left(2x\right)^2+\left(2y\right)^2+\left(2z+1\right)^2\)

\(=4x^2+4y^2+4z^2+4z+1\)

\(=4\left(x^2+y^2+z^2+z\right)+1\)

\(\Rightarrow\left(1\right)\Leftrightarrow4\left(x^2+y^2+z^2+z\right)=2014\)(2)

Vì \(4\left(x^2+y^2+z^2+z\right)⋮4\)mà 2014 không chia hết cho 4 nên (2) không xảy ra.

+) TH2: Có 3 số lẻ

Do vai trò của a,b,c là như nhau nên giả sử a2 ; b2 ; c2 lẻ . Đặt a = 2x + 1, b = 2y + 1 , c = 2z + 1

\(\Rightarrow a^2+b^2+c^2=\left(2x+1\right)^2+\left(2y+1\right)^2+\left(2z+1\right)^2\)

\(=4x^2+4x+1+4y^2+4y+1+4z^2+4z+1\)

\(=4\left(x^2+x+y^2+y+z^2+z\right)+3\)

\(\Rightarrow\left(1\right)\Leftrightarrow4\left(x^2+x+y^2+y+z^2+z\right)=2012\)

\(\Leftrightarrow\left(x^2+x+y^2+y+z^2+z\right)=503\)

\(\Leftrightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=503\)(3)

Tích hai số nguyên liên tiếp chia hết cho 2 nên \(\hept{\begin{cases}x\left(x+1\right)⋮2\\y\left(y+1\right)⋮2\\z\left(z+1\right)⋮2\end{cases}}\)

\(\Rightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)⋮2\)

Mà 503 lẻ nên (3) không xảy ra

Vậy không tồn tại các số nguyên a,b,c sao cho a2 + b2 + c2 = 2015

14 tháng 2 2020

không

26 tháng 12 2016

b^2=ac

b^2+2017bc=ac+2017bc

b(b+2017c)=c(a+2017b)

b/c=(a+2017b)/(b+2017c)

(b/c)^2=((a+2017b)/(b+2017c))^2

b^2/c^2=(a+2017b)^2/(b+2017c)^2

thế b^2=ac ta có 

ac/c^2=(a+2017b)^2/(b+2017c)^2 

a/c=(a+2017b)^2/(b+2017c)^2 

3 tháng 5 2018

Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d

Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \) 

Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

\(\Rightarrow\)\(\left(ĐPCM\right)\)

4 tháng 5 2018

Chỗ "các đơn thức chỉ có dạng chung duy nhất là 2k" ấy mình thấy thay bằng:

Mà \(f\left(7\right)-f\left(3\right)=316a+90b+12c\)

                               \(=2\left(158a+45b+6c\right)⋮2\)

                                 =>ĐCCM

hay hơn.

Dù sao thì cũng cho bạn !!!

8 tháng 5 2015

mình chỉ làm được bài 1 thôi .

1/ ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

=> Tổng S ko là số chính phương . 

18 tháng 1 2017

Chắc đg oy đó bợn à 

K cho mk nhé