K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 6 2019

Lời giải:

Bạn chú ý lần sau gõ đề bài cho chuẩn xác. Không có dấu ngoặc () rất dễ gây lầm đề.

\(\cos ^4x(2\cos ^2x-3)+\sin ^4x(2\sin ^2x-3)\)

\(=2\cos ^6x-3\cos ^4x+2\sin ^6x-3\sin ^4x\)

\(=2[(\cos ^2x)^3+(\sin ^2x)^3]-3(\cos ^4x+\sin ^4x)\)

\(=2(\cos^2x+\sin ^2x)(\cos ^4x-\cos ^2x\sin ^2x+\sin ^4x)-3(\cos ^4x+\sin ^4x)\)

\(=2(\cos ^4x-\cos ^2x\sin ^2x+\sin ^4x)-3(\cos ^4x+\sin ^4x)\)

\(=-(\cos ^4x+2\cos ^2x\sin ^2x+\sin ^4x)=-(\cos ^2x+\sin ^2x)^2\)

\(=-1^2=-1\) là giá trị không phụ thuộc vào $x$. (đpcm)

NV
22 tháng 6 2019

\(=cos^2x\left(cos^2x+sin^2x\right)+cos^4x-sin^4x+3sin^2x\)

\(=cos^2x+3sin^2x+\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)\)

\(=2cos^2x+2sin^2x=2\)

22 tháng 6 2019

c)

\(\cos\left(x\right)^4+\sin\left(x\right)^2\cos\left(x\right)^2+\sin\left(x\right)^2\\ =\left(\cos\left(x\right)^2+\sin\left(x\right)^2\right)\cos\left(x\right)^2+\sin\left(x\right)^2\\ =\cos\left(x\right)^2+\sin\left(x\right)^2\\ =1\)

22 tháng 6 2019

\(\cos\left(x\right)^4-\sin\left(x\right)^4+2\sin\left(x\right)^2\\ =\left(\cos\left(x\right)^2-\sin\left(x\right)^2\right)\left(\cos\left(x\right)^2+\sin\left(x\right)^2\right)+2\sin\left(x\right)^2\\ =\cos\left(2x\right)\cdot1+2\sin\left(x\right)^2\\ =\cos\left(x\right)^2-\sin\left(x\right)^2+2\sin\left(x\right)^2\\ =\cos\left(x\right)^2+\sin\left(x\right)^2\\ =1\)

NV
22 tháng 6 2019

\(=cot^2x\left(cos^2x-1\right)+cos^2x+4\left(sin^2x+cos^2x\right)\)

\(=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+4\)

\(=-cos^2x+cos^2x+4=4\)

Khỏi tick

23 tháng 6 2019

\(\cos^4x-\sin^4x=\left(\cos^2x-\sin^2x\right)\left(\cos^2x+\sin^2x\right)\)

\(=\cos^2x-\sin^2x=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1\)

(đpcm)

12 tháng 7 2018

Bước đến nhà em bóng xế tà

Đứng chờ năm phút bố em ra

Lơ thơ phía trước vài con chó

Lác đác đằng sau chiếc chổi chà

Sợ quá anh chuồn quên đôi dép

Bố nàng ngoác mỏ đứng chửi cha

Phen này nhất quyết thuê cây kiếm

Trở về chém ổng đứt làm ba



thấy hay thì

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)

25 tháng 6 2019

\(\sin^2x+\cos^2x=1\Rightarrow\sin^2x-\cos^2x=1-2\cos^2x\)

\(\Rightarrow VT=\frac{\sin^2x-\cos^2x}{\sin^2x.\cos^2x}=\frac{\sin^4x-\cos^4x}{\sin^2x.\cos^2x}=\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\sin^2x}=\tan^2x-\cot^2x=VP\)

23 tháng 6 2019

\(\sin^6x+\cos^6x\\ =\left(\sin^2x\right)^3+\left(\cos^2x\right)^3\\ =\left(\sin^2x+\cos^2x\right)^3-3\sin^2x\cos^2x\left(\sin^2x+\cos^2x\right)\\ =1-3\sin^2x\cos^2x\left(đpcm\right)\)

23 tháng 6 2019

\(sin^6x+cos^6x\)

=\(\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

=\(sin^4x-sin^2x.cos^2x+cos^4x\)

=\(\left(1-2sin^2x.cos^2x\right)-sin^2x.cos^2x\)

=\(1-3sin^2x.cos^2x\)(đpcm)

\(sin^6x+cos^6x\)=\(1-3sin^2x.cos^2x\)