K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

abcdef - fedcba chia hết cho 9

16 tháng 5 2019

Chứng minh giúp mk với! bn ơi

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Bài 1:

a. $2x-10-[3x-14-(4-5x)-2x]=2$

$2x-10-3x+14+(4-5x)+2x=2$

$-x-10+14+4-5x+2x=2$

$-4x+8=2$

$-4x=-6$

$x=\frac{-6}{-4}=\frac{3}{2}$

b. Đề sai. Bạn xem lại. 

c.

$|x-3|=|2x+1|$

$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$

$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Bài 2:

a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$

Ta có:

$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)

b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$

Ta có:

$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)

c.

Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.

Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$

Tổng của $n$ số nguyên liên tiếp là:

$a+(a+1)+(a+2)+....+(a+n-1)$

$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$

$=n[a+\frac{n-1}{2}]$

Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên

$\Rightarrow a+\frac{n-1}{2}$ nguyên

$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$

 

NM
14 tháng 1 2022

trong phòng có 5 người thì số người quen của mỗi người có thể quen từ 0 đến 4 người

mà không thể xuất hiện 1 người qune 0 người và 1 người quen 4 người được

thế nên số người quen của 1 người chỉ là 4 trong 5 giá trị

nên theo nguyên lí dirichlet thì tông tại 2 người có cùng số người quen.

Tổng quát bài toán, trong n người bất kỳ luôn tồn tại hai người có cùng số người quen

25 tháng 4 2016

A           xp=x+x2+x^3+x^4+..................+x^2016

=>xp-p= x^2016-1 ban nhe

B        ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3

22 tháng 11 2015

dài quá hỏi từng câu thôi nhé

19 tháng 10 2016

Chứng minh rổng quát, Nếu:

\(A=\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+...+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\) (a;b \(\in\) N*)

\(a^{2.k}.A=1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+...+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\)

\(a^{2.k}.A+A=\left(1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+..+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\right)-\left(\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+..+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\right)\)

\(A.\left(a^{2.k}+1\right)=1-\frac{1}{a^{2.\left(k+n+1\right)}}< 1\)

\(A< \frac{1}{a^{2.k}+1}\)

Áp dụng vào bài toán dễ thấy a = 3; k = 1

Như vậy, \(A< \frac{1}{3^{2.1}+1}=\frac{1}{3^2+1}=\frac{1}{9+1}=\frac{1}{10}=0,1\left(đpcm\right)\)

20 tháng 10 2016

\(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\)

\(\Rightarrow9A=1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{2012}}-\frac{1}{3^{2014}}\)

\(\Rightarrow10A=1-\frac{1}{3^{2016}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{2016}}}{10}\)

Vì 0,1 = \(\frac{1}{10}\) nên \(\frac{1-\frac{1}{3^{2016}}}{10}< \frac{1}{10}\) hay A < 0,1