K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

Câu 1:

$P=\dfrac{2x+4\sqrt x+2}{\sqrt x}$ `(đkxđ:` $x>0$)

Xét $P-6=\dfrac{2.x+4.\sqrt[]x+2}{\sqrt[]x}-6=\dfrac{2x+4.\sqrt[]x-6.\sqrt[]x+2}{\sqrt[]x}$

$=\dfrac{2.x-2.\sqrt[]x+2}{\sqrt[]x}$

$=\dfrac{2.(x-\sqrt[]x+1)}{\sqrt[]x}$

Mà $x-\sqrt[]x+1=(\sqrt[]x-\dfrac{1}{2})^2+\dfrac{3}{4}>0∀x>0$
$⇒2.(x-\sqrt[]x+1)>0∀x>0$

Mà $\sqrt[]x>0∀x>0$

$⇒\dfrac{2.(x-\sqrt[]x+1)}{\sqrt[]x}>0∀x>0$
hay $P-6>0⇒P>6∀x>0$ (đpcm)

Câu 2:

$P=\dfrac2{x+\sqrt x+1}$ (đkxđ: $x\ge0$)

Ta có $x+\sqrt[]x+1=(\sqrt[]x+\dfrac{1}{2})^2+\dfrac{3}{4}>0∀x\ge0$

$⇒P>0∀x\ge0$

Xét $P-2=\dfrac{2}{x+\sqrt[]x+1}-2=\dfrac{2-2.x-2.\sqrt[]x-2}{x+\sqrt[]x+1}=\dfrac{-2(x+\sqrt[]x)}{x+\sqrt[]x+1}$

Mà $x>0⇒\sqrt[]x>0⇒x+\sqrt[]x>0$

$⇒-2(x+\sqrt[]x)<0$

$⇒\dfrac{-2(x+\sqrt[]x)}{x+\sqrt[]x+1}<0$

$⇒P-2<0$

$⇒P<2$

Vậy $0<P<2$

\(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{3x+\sqrt{x}+3-x+\sqrt{x}-1}{\sqrt{x}}=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

29 tháng 5 2017

b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)

Theo đề bài ta có:

\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)

Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)

\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)

Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM