K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2014

a) Ta có: a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>2a2+2b2+2c2-2ab-2bc-2ca=0

<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0

<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0

<=>(a-b)2+(b-c)2+(a-c)2=0

=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c

=>a=b=c

24 tháng 4 2016

không biết

:) :)

2 tháng 7 2017

a) a2+b2+c2 = ab+bc+ca nhân 2 vào cả 2 vế, chuyển tất cả sang vế trái thành 3 HĐT=>đpcm

b) (a+b+c)2 = 3(a2+b2+c2) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế phaỉ tạo ra 3 HĐT=> dpcm

c) (a+b+c)2 = 3(ab+bc+ca) tách (a+b+c)2 thành a2+b2+c2+2ab+2bc+2ac, bỏ ngoặc vế phải, chuyển hết sang vế trái rồi làm như câu a

Hãy nhấn k nếu bạn thấy đây là câu tl đúng :)

2 tháng 7 2016

Với mọi a,b,c ta đều có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0.\)Dấu "=" chỉ xảy ra khi a = b = c.

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(1)

a) \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)nên \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow a=b=c\)đpcm (a)

b) \(\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2ba+2ac=\left(a+b+c\right)^2\)

nên \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\Leftrightarrow a=b=c\)đpcm (b)

c) Từ \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

nên \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a=b=c\)đpcm (c).

2 tháng 7 2016

Trừ VT cho VP rồi khai triển về dạng hđt là OK

14 tháng 10 2017

a) a2 + b2 + c2 = ab + bc + ac

\(\Rightarrow\) a2 + b2 + c2 - ab - bc - ac = 0

\(\Rightarrow\) 2(a2 + b2 + c2 - ab - bc - ac) = 0

\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0

\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)

\(\Rightarrow\) a = b = c

b) (a + b + c)2 = 3(a2 + b2 + c2)

a2 + b2 + c2 + 2ab + 2bc + 2ac = 3a2 + 3b2 + 3c2

\(\Rightarrow\) 2ab + 2ac + 2bc = 2a2 + 2b2 + 2c2

\(\Rightarrow\) 0 = a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac

Hay: a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0

\(\Rightarrow\)(a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)

\(\Rightarrow\) a = b = c

c) (a + b + c)2 = 3(ab + bc + ac)

a2 + b2 + c2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac

\(\Rightarrow\) a2 + b2 + c2 = ab + ac + bc2

\(\Rightarrow\) 2(a2 + b2 + c2) = 2(ab + ac + bc)

\(\Rightarrow\) 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac

\(\Rightarrow\) a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ac = 0

\(\Rightarrow\) (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0

\(\Rightarrow\) (a - b)2 + (a - c)2 + (b - c)2 = 0

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=0\\a=c\\b=c\end{matrix}\right.\)

\(\Rightarrow\) a = b = c

CHÚC BN HOK TỐT(nhớ tik mik nhavuivuivui)

14 tháng 10 2017

a)Cmr : Nếu : a2 + b2 + c2 = ab + bc + ac thì a = b =c

Bài làm

2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

=> ( a2 - 2ab + b2) + ( a2 - 2ac + c2) + ( b2 - 2bc + c2) =0

= > ( a - b)2 + ( a - c)2 + ( b -c)2 = 0

Vậy :

* ( a - b)2 = 0

* ( a - c)2 =0

* (b -c)2 =0

Suy ra :

* a =b

* a =c

* b = c

Suy ra : a = b =c ( đpcm)

b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)

=>(a-c)^2+(a-b)^2+(b-c)^2=0

=>a=b=c

c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)

=>(a-b)^2+(a-c)^2+(b-c)^2=0

=>a=b=c

23 tháng 9 2020

a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

23 tháng 9 2020

Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

1 tháng 7 2016

a) \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

b) \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

(Nhớ k cho mình với nhé!)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)