K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

A=1+2+22+23+...+299
A=20+ 21 +22 +23+...+299 (1)
2A=2x(20+21+22+...+299
2A=21+22+23+...+2100 (2)
Trừ (2) cho (1) ta có:
2A-A=21+22+23+...+2100 -20+21+22+23+...+299
A=2100-1
2 là số chẵn => 2100 là số chẵn: 0;2;4;6;8(vì 2100=2.2.2.2.2....2(100 số 2) và có tận cùng là 2;4;6;8 và loại 0 vì 2.2.2...2(100 số 2) ko có c/số tận cùng =0) * Phần này tôi có thể giải một cách tỉ mỉ hơn tại sao 2100 lại có c/số tận cùng =2;4;6;8 nhưng tôi sợ bạn chưa học nên ko giải và cái mà tôi định giải là kiến thức lớp 6 và tôi là hs lớp 6*
Số chính phương có c/số tận cùng ko bằng=2;3;7;9
Mà 2100-1 có c/số tận cùng = 1;3;5;7 => 2100-1 là số chính phương.
 

8 tháng 5 2015

mình chỉ làm được bài 1 thôi .

1/ ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

=> Tổng S ko là số chính phương . 

18 tháng 1 2017

Chắc đg oy đó bợn à 

K cho mk nhé

17 tháng 1 2016

ai tick mik tick lại cho

18 tháng 1 2016

mik tick cậu rồi đó tick lại mik đi

27 tháng 3 2020

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

17 tháng 7 2015

a)A=3+32+33+...+32004

=>3A=32+33+34+...+32005

=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)

=>2A=32+33+34+...+32005-3-32-33-...-32004

=>2A=32005-3

=>A=0,10025

17 tháng 7 2015

a)A=3+32+33+...+32004

=>3A=32+33+34+...+32005

=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)

=>2A=32+33+34+...+32005-3-32-33-...-32004

=>2A=32005-3

=>A=\(\frac{3^{2005}-3}{2}\)

 

7 tháng 6 2015

1 / Ta chứng minh phản chứng

Giả sử tồn tại a thoả mãn a không phải là số chính phương và căn a là số hữu tỉ ( không vô tỉ thì hữu tỉ chứ còn gì :v )

Tức là căn a biểu diễn dưới dạng m/n ( với m, n là số nguyên, n khác 0 )

căn a = m/n                 GCD ( m,n ) = 1 ( ước chung lớn nhất của m, n là 1 hay m/n là phân số tối giản )

suy ra a = (m/n)^2 (*)

1/ Giả sử a là số nguyên tố

m^2 = a x n^2

Suy ra m^2 chia hết cho a

mà a là số nguyên tố

suy ra m chia hết cho a

Suy ra m có dạng a x k

Thay vào (*) được a = ((a x k) / n)^2

Suy ra (a x k)^2 = a x n^2

Suy ra a k^2 = n^2

Suy ra n^2 chia hết cho a

Suy ra n chia hết cho a

Vậy m,n cùng chia hết cho a, trái với giả thiết GCD (m,n) = 1. Tức là không tồn tại a

2/ a không phải là số nguyên tố 

Tức là a = p x q ( p là số nguyên tố, q là số nguyên dương )

p x q = (m/n)^2

Hay m^2 = p x q x n^2

Đến đây lại suy ra m^2 chia hết cho p nguyên tố

Quay lại chứng minh tương tự như phần 1 ( coi p như a là ổn ) 

25 tháng 12 2018

Bài 1: Chứng minh rằng mọi số nguyên x, y thì:

A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.

Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4

= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4

Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì

A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2

Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z

Vậy A là số chính phương.

25 tháng 12 2018

Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.

Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:

n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1

= (n2 + 3n)(n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2

= (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.