Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+23+...+299
A=20+ 21 +22 +23+...+299 (1)
2A=2x(20+21+22+...+299)
2A=21+22+23+...+2100 (2)
Trừ (2) cho (1) ta có:
2A-A=21+22+23+...+2100 -20+21+22+23+...+299
A=2100-1
2 là số chẵn => 2100 là số chẵn: 0;2;4;6;8(vì 2100=2.2.2.2.2....2(100 số 2) và có tận cùng là 2;4;6;8 và loại 0 vì 2.2.2...2(100 số 2) ko có c/số tận cùng =0) * Phần này tôi có thể giải một cách tỉ mỉ hơn tại sao 2100 lại có c/số tận cùng =2;4;6;8 nhưng tôi sợ bạn chưa học nên ko giải và cái mà tôi định giải là kiến thức lớp 6 và tôi là hs lớp 6*
Số chính phương có c/số tận cùng ko bằng=2;3;7;9
Mà 2100-1 có c/số tận cùng = 1;3;5;7 => 2100-1 là số chính phương.
mình chỉ làm được bài 1 thôi .
1/ ta có : abc + bca + cab = 111a + 111b + 111c
= 111 . (a+b+c)
= 3. 37 . (a+b+c)
Để S là số chính phương thì a+b+c = 3. 37 . k^2.
Mà a+ b+ c < hoặc = 27 nên :
=> Tổng S ko là số chính phương .
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=0,10025
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=\(\frac{3^{2005}-3}{2}\)
1 / Ta chứng minh phản chứng
Giả sử tồn tại a thoả mãn a không phải là số chính phương và căn a là số hữu tỉ ( không vô tỉ thì hữu tỉ chứ còn gì :v )
Tức là căn a biểu diễn dưới dạng m/n ( với m, n là số nguyên, n khác 0 )
căn a = m/n GCD ( m,n ) = 1 ( ước chung lớn nhất của m, n là 1 hay m/n là phân số tối giản )
suy ra a = (m/n)^2 (*)
1/ Giả sử a là số nguyên tố
m^2 = a x n^2
Suy ra m^2 chia hết cho a
mà a là số nguyên tố
suy ra m chia hết cho a
Suy ra m có dạng a x k
Thay vào (*) được a = ((a x k) / n)^2
Suy ra (a x k)^2 = a x n^2
Suy ra a k^2 = n^2
Suy ra n^2 chia hết cho a
Suy ra n chia hết cho a
Vậy m,n cùng chia hết cho a, trái với giả thiết GCD (m,n) = 1. Tức là không tồn tại a
2/ a không phải là số nguyên tố
Tức là a = p x q ( p là số nguyên tố, q là số nguyên dương )
p x q = (m/n)^2
Hay m^2 = p x q x n^2
Đến đây lại suy ra m^2 chia hết cho p nguyên tố
Quay lại chứng minh tương tự như phần 1 ( coi p như a là ổn )
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.