Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(0\le a,b,c\le1\)nên ta có \(1-a>0,1-b>0,1-c>0\)\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(a+b+c\right)+\left(ab+ac+bc\right)-abc\ge0\)
\(\Leftrightarrow1\ge a+b+c-\left(ac+bc+ab\right)+abc\left(1\right)\)
Mặt khác vì \(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3;abc\ge0\left(2\right)\)
Từ 1,2 có : \(a+b^2+c^3-\left(ab+ac+bc\right)\le1\)
dấu \(\left(a,b,c\right)\)là hoán vị của \(\left(0,1,1\right)\)
ta có BĐT cần chứng minh
<=>\(\frac{2}{3}a^2-\frac{4}{3}ab+\frac{2}{3}b^2\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
dấu = xảy ra <=>a=b
^_^
2.
a, Kẻ \(AH\perp BC\Rightarrow\left\{{}\begin{matrix}cosB=\frac{BH}{AB}\\cosC=\frac{CH}{AC}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}BH=AB.cosB\\CH=AC.cosC\end{matrix}\right.\)
\(\Rightarrow BC=BH+CH=AB.cosB+AC.cosC\)
b, câu b trưa học tối làm tiếp nha, giờ có việc gấp
1. Đề đúng phải là \(sin\widehat{BAC}=2sin\widehat{HAC}.cos\widehat{HAC}\) \(\left(cos\text{ không phải }cot\right)\)
Kẻ \(BD\perp AC\)
\(sin\widehat{BAC}=2sin\widehat{HAC}.cos\widehat{HAC}\)
\(\Leftrightarrow\frac{BD}{AB}=2.\frac{CH}{AC}.\frac{AH}{AC}=\frac{BC.AH}{AB^2}\)
\(\Leftrightarrow\frac{BD}{BC}=\frac{AH}{AB}\)
Ta cần chứng minh \(\frac{BD}{BC}=\frac{AH}{AB}\)
Xét \(\Delta BDC\) và \(\Delta AHB\) có:
\(\left\{{}\begin{matrix}\widehat{C}=\widehat{ABH}\\\widehat{BDC}=\widehat{AHB}=90^o\end{matrix}\right.\Rightarrow\Delta BDC\sim\Delta AHB\left(g-g\right)\)
\(\Rightarrow\frac{BD}{BC}=\frac{AH}{AB}\left(đpcm\right)\)
a: Xét tứ giác OAMB có
\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
c: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
Bạn nên viết đề bằng công thức toán để được hỗ trợ tốt hơn. Đọc thế này khó hiểu lắm.