K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

\(A=3+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{29}+3^{30}\right)\)

\(A=1\left(3+3^2\right)+3^2\left(3+3^2\right)+....+3^{28}\left(3+3^2\right)\)

\(A=\left(1+3^2+...+3^{28}\right)\left(3+3^2\right)\)

\(A=13\left(1+3^2+...+3^{28}\right)⋮13\left(đpcm\right)\)

13 tháng 5 2016

Ta có: 

\(A=3+3^2+3^3+...+3^{2004}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2002}+3^{2003}+3^{2004}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2002}\left(1+3+3^2\right)\)

\(=\left(3+3^4+...+3^{2002}\right)\left(1+3+3^2\right)\)

\(=\left(3+3^4+...+3^{2002}\right).13\)

=> A chia hết cho 13                  (1)

Lại có: 

\(A=3+3^2+3^3+...+3^{2004}\)

\(=\left(3+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{2001}+3^{2003}\right)+\left(3^{2002}+3^{2004}\right)\)

\(=3\left(1+3^2\right)+3^2\left(1+3^2\right)+...+3^{2001}\left(1+3^2\right)+3^{2002}\left(1+3^2\right)\)

\(=\left(3+3^2+...+3^{2001}+3^{2002}\right)\left(1+3^2\right)\)

\(=\left(3+3^2+...+3^{2001}+3^{2002}\right).10\)

=> A chia hết cho 10                 (2)

Từ (1) (2) suy ra A chia hết cho 130

13 tháng 5 2016

Ta có: 3A   = 3(3+32+...+32004)

           3A   = 32+33+...+32005

           3A-A= 32005 + 3

            2A   = 32005 +3

             A     = 32005 + 3 / 2

Vì A có 2004 số hạng, nhóm A thành các nhóm, mỗi nhóm có 4 số hạng

    =>A=(3+32 +33 +34 )+(35+36 +37+38)+...+(32001+32002+32003+32004)

         A=(3+32+33+34)+34(3+32+33+34)+...+32000(3+32+33+34)

         A=(1+34+...+32000)(3+32+33+34)

         A=(1+34+...+32000).180(chia hết cho 180)

Vậy A chia hết cho 180 (đpcm)

27 tháng 9 2017

T: Câu hỏi của Nguyen Thi Thu Huong - Toán lớp 6 - Học toán với OnlineMath

5 tháng 6 2016

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k)  3

Ta phải chứng minh rằng Sk+1  3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1) 

                        = k3  + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5 

                         = k3 + 3k2 + 5k + 3k2 + 9k + 9

 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk   3, mặt khác 3(k2 + 3k + 3)  3 nên Sk+1  3.

Vậy (n3 + 3n2 + 5n)  3 với mọi n ε N*  .


 

5 tháng 6 2016

b) Đặt Sn = 4n + 15n - 1 

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1   9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1  9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

                                    = 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)    

Theo giả thiết quy nạp thì  Sk   9  nên 4S1   9, mặt khác 9(5k - 2)   9, nên Sk+1  9

Vậy (4n + 15n - 1)  9 với mọi n ε N*  



 

24 tháng 2 2017

a/ \(9^{2n+1}+1=\left(9+1\right)\left(9^{2n}-9^{2n-1}+...\right)=10\left(9^{2n}-9^{2n-1}+...\right)\)

Chia hết cho 10

b/ \(3^{4n+1}+2=3^{4n+1}-3+5=3\left(3^{4n}-1\right)+5\)

\(=3\left(81^n-1\right)+5=3.80\left(81^{n-1}+...\right)+5\)

Cái này chia hết cho 5

2 tháng 8 2020

Tham khảo câu trả lời tại đây bạn nhé !

https://olm.vn/hoi-dap/detail/224113518607.html

Câu hỏi của An Van - Toán lớp 10 - Học toán với OnlineMath

Chúc bạn học tốt ^_^

2 tháng 8 2020

Bài làm:

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n\)

\(=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1)(n+2) là tích 3 STN liên tiếp 

=> n(n+1)(n+2) chia hết cho 3, mà 3n chia hết cho 3

=> đpcm

Bài 2:

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{2008}\right)⋮7\)

1 tháng 7 2019

Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)

Vậy khẳng định đúng với n=1.

Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)

Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:

\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)

\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)

\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)

Mà \(\left(m^3+3m^2+5m\right)⋮3\)

\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)

Do đó khẳng định đúng với n=m+1.

Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)

1 tháng 7 2019

\(\forall n\ge1,n\in N\)

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1) (n+2)  tích của 3 số tự nhiên liên tiếp

=> n( n+1) (n+2) chia hết cho 3

và 3n c hia hết cho 3

=> \(n^3+3n^2+5n\) chia hết cho 3

1: \(=\dfrac{1}{29\cdot30}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{28\cdot29}\right)\)

\(=\dfrac{1}{29\cdot30}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{28}-\dfrac{1}{29}\right)\)

\(=\dfrac{1}{29\cdot30}-\dfrac{28}{29}=\dfrac{1-28\cdot30}{870}=\dfrac{-859}{870}\)