K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2021

Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x

1 tháng 11 2021

À em gấp quá nên ghi nhầm + thành x

\(E=25\left[3\cdot\left(5+4^2+4^3+...+4^{2021}\right)+1\right]\)

\(=25\cdot\left(4^2+4^2+4^3+...+4^{2021}\right)\)

\(=25\cdot4^{2022}⋮4^{2022}\)

 

 

17 tháng 10 2021

2 x 26 x 5 =............... không biết 

NM
17 tháng 10 2021

ta có:

undefined

27 tháng 6 2016

Làm bên dưới rồi.

27 tháng 6 2016

Ta có; 4 + 42 + 43 + ..... + 419

    = (4 + 42) + (43 + 44) + .... + (418 + 419)

    = 4.(1 + 4) + 43.(1+4) + ..... + 418.(1 + 4)

   = 4. 5 + 43 . 5 + ......+ 418.5

    = (4 + 43 + .... + 418) . 5 chia hết cho 5

26 tháng 8 2018

A = 1 + 4 + 4^2 + 4^3 + ...+ 4^59 ( có 60 số hạng)

A = (1+4+4^2) + (4^3+4^4+4^5) + ...+ (4^57+4^58 + 4^59) ( có 20 cặp số hạng)

A = 21 + 4^3.(1+4+4^2) + ....+ 4^57.(1+4+4^2)

A= 21 + 4^3.21 + ...+ 4^57.21

A = 21.(1+4^3+...+4^57) chia hết cho 21

phần b đề là j z bn

26 tháng 10 2017

A=(4+4^2)+(4^3+4^4)+...+(4^19+4^20)

A=4(1+4)+4^3(1+4)+...+4^19(1+4)

A=(1+4).(4+4^3+...+4^19)

A=5.(4+4^3+..+4^19)

vì 5 chia hết cho =>5.(4+4^3+...+4^19) chí hết cho 5

=> A chia hết cho 5 

câu b làm tương tự cũng nhóm mỗi nhóm là 2 số hạng giống a nha bn

26 tháng 10 2017

ảnh đại diện là Miku trong Date a live

AH
Akai Haruma
Giáo viên
4 tháng 9 2023

Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$

$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$

$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$

$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$

$=1+6(-1+2^3-2^6+...+2^{2019})$

Suy ra $A$ chia $6$ dư $1$/