Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)
\(=\left(1+5^2+5^3\right)+\left(5^3+5^4+5^5\right)+....\left(5^{402}+5^{403}+5^{504}\right)\)
\(=1\left(1+5+5^2+5^3\right)+5^3\left(1+5+5^2+5^3\right)+....+5^{402}\left(1+5+5^2+5^3\right)\)
\(=1.31+5^3.31+....+5^{302}.31\)
\(=31\left(1+5^3+...+5^{402}\right)\)
Vì có thừa số chung là 31 nen tổng trên chia hết cho 31. Vậy...
Ta có: 52003 + 52002 + 52001
= 52001.(52 + 5 + 1)
= 52001 . 31 chia hết cho 31
Ghép các số lại
1+5+5^2=31
5^3+5^4+5^5=5^3.(1+5+5^2)=5^3.31
Dễ r đung ko?
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
=(1+5+5^2)+...+5^402(1+5+5^2)
=31+...+5^402.31
=31(1+...+5^402) chia hết cho 31
\(1+5+5^2+...+5^{404}=\left(1+5+5^2\right)+...+\left(5^{400}+5^{401}+5^{402}\right)=31+31.5^3+...+31.5^{400}\)
\(=31\left(1+5^3+5^6+...+5^{400}\right)\)chia hết cho 31
Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)
= \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)
= \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)
= \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)
= \(31\cdot1+...+31\cdot5^{402}\)
= \(31\cdot\left(1+...+5^{402}\right)⋮31\)
Vậy tổng trên chia hết cho 31