Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(VT=12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}\)
\(VP=18^{16}=2^{16}\cdot3^{32}\)
=> VT=VP
b) \(\frac{\left(5^4-5^3\right)^3}{125^5}=\frac{64}{25^5}\)
(đề sai)
c) \(\frac{9^3}{\left(3^4-3^3\right)^2}=\frac{1}{4}\)
\(VT=\frac{9^3}{\left(3^4-3^3\right)^2}=\frac{3^6}{\left[3^3\left(3-1\right)\right]^2}=\frac{1}{2^2}=\frac{1}{4}=VP\)
Ta có : \(\left(x-\frac{1}{2}\right)^2+\left|y+\frac{1}{3}\right|=0\)
Mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\left|x+\frac{1}{3}\right|\ge0\forall x\)
Nên : \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left|x+\frac{1}{3}\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{3}\end{cases}}\)
Bài 1:
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
\(=\left(3^2\right)^4+\left(3^3\right)^3+3^6+\left(3.37\right)^2=\)
\(=3^8+3^9+3^6+3^2.37^2=3^6\left(3^2+3^3+1\right)+3^2.37^2\)
\(3^6.37+3^2.37^2=37\left(3^6+3^2.37\right)\) chia hết cho 37
Giải:
\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{99}.4\)
\(=4\left(3+3^3+...+3^{99}\right)⋮4\)
Vậy ...
Chúc bạn học tốt!
\(\frac{9^2}{3^4-3^3}=\frac{3^4}{3^4-3^3}=\frac{3^4}{3^3\left(3-1\right)}=\frac{3}{2}\\ \)