K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

\(5^2=25=6\) [19]

\(\Rightarrow A=7.6^n+12.6^n=19.6^n\) [19]

Do đó: \(A⋮19\)

25 tháng 9 2017

7.52n + 12.6n

= 7.52n + ( 19 - 7 ). 6n

= 7.52n + 19. 6n - 7.6n

= 7.52n - 7.6n + 19. 6n

= 7(52n - 6n ) + 19.6n

= 7(25n - 6n ) + 19.6n

Xét 7(25n - 6n ) \(⋮\) 19; 19.6n \(⋮\)19

=> đpcm

5 tháng 3 2018

Vì 25 đồng dư với 6 (mod19) nên 25n đồng dư với 6n (mod19)

Suy ra: 7.52n+12.6n=7.25n+12.6n đồng dư với 7.6n+12.6n (mod19)

Mà 7.6n+12.6n=19.6n đồng dư với 0 (mod19)

Suy ra: 7.52n+12.6n đồng dư với 0 (mod19) 

=> đpcm

25 tháng 7 2017

1)

\(7.5^{2n}+12.6^n\)

\(=7.25^n+12.25^n-12.25^n+12.6^n\)

\(=19.25^n-12.\left(25^n-6^n\right)\)

Ta có: 19.25n \(⋮\) 19

Vì 25n - 6n \(⋮\) 25 - 6

=> 25n - 6n \(⋮\) 19

Do đó : \(19.25^n-12.\left(25^n-6^n\right)\) \(⋮\) 19

=> \(7.5^{2n}+12.6^n\) \(⋮\) 19

2)

\(11^{n+2}+12^{2n+1}\)

\(=11^n.121+144^n.12\)

\(=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+12.\left(144^n-11^n\right)\)

Ta có: 11n .133 \(⋮\) 133

Vì 144n - 11n \(⋮\) 144 - 11

=> 144n - 11n \(⋮\) 133

Do đó : \(11^n.133+12.\left(144^n-11^n\right)\) \(⋮\) 133

=> \(11^{n+2}+12^{2n+1}\) \(⋮\) 133

30 tháng 11 2017

1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!

30 tháng 11 2017

Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé

phần a sai đề nha bạn 

b,Ta có

      \(2\equiv2\left(mod13\right)\)

\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)

\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)

\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)

\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)

Lại có:

\(3\equiv3\left(mod13\right)\)

\(\Rightarrow3^6\equiv1\left(mod13\right)\)

\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)

\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)

\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)

c, Ta có

\(17\equiv-1\left(mod18\right)\)

\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)

Lại có

\(19\equiv1\left(mod18\right)\)

\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)

\(\Rightarrow17^{19}+19^{17}⋮18\)