K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

B = 1 + 3 + 32 + 33 + 34 + 35 + ... + 311

B = (1 + 3 + 32 + 33 + 34 + 35) + (36 + 37 + 38 + 39 + 310 + 311)

B = 364 + 36.364

B = 364(36 + 1) \(⋮\) 52

28 tháng 9 2017

Bạn ơi, sao 23 + 25 mà lại tới 260?

\(1+4+4^2+4^3+...+4^{59}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(=5+4^2.5+...+4^{58}.5\)

\(=5.\left(1+4^2+...+4^{58}\right)⋮5\)

\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮5\)

\(1+4+4^2+4^3+...+4^{59}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

\(=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)

\(=21+4^3.21+...+4^{57}.21\)

\(=21.\left(1+4^3+...+4^{57}\right)⋮21\)

\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮21\)

\(1+4+4^2+4^3+...+4^{59}\)

\(=\left(1+4+4^2+4^3\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)

\(=\left(1+4+4^2+4^3\right)+...+4^{56}.\left(1+4+4^2+4^3\right)\)

\(=85+...+4^{56}.85\)

\(=85.\left(1+...+4^{56}\right)\)

19 tháng 4 2016

4a=4+42+43+......+42013

4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)

3a=42013-1

a=42013-1

       3       

29 tháng 9 2017

Gọi phần a, là A,ta có:

A=1+4+42+43+...+42000

4.A=4.(1+4+42+...+42000)

4.A=4+42+43+44+...+42001

4.A-A=(4+42+43+...+42001)-(1+4+42+...+42000)

3.A=4+42+43+...+42001 -1-4-42-...-42000

3.A=42001-1

A=(42001-1):3

K CHO MIK NHÉ !

7 tháng 1 2021

a) P=2+22+23+24+...+260 \(⋮\) 21 và 15

\(\Rightarrow\)P = 22+23+24+25+...+261  

\(\Rightarrow\) (2P - P) = 261 - 2

\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)

Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15

tức là (260 - 1) \(⋮\)3; 5; 7

*Ta có 260 - 1 = (24)15 = 1615 - 1

          = (16 - 1).(1+16+162+163+...+1614)

          = 15.(1+16+162+163+...+1614\(⋮\) 15  

Vậy  P \(⋮\) 15  (1)

    * Ta có 260 - 1 = (26)10 - 1 = 6410 - 1

                = (64 - 1).(1+64+642+643+...+64)

                = 63 \(⋮\) (1+64+642+643+...+64)

                = 21.3.(1+64+642+643+...+64\(⋮\) 21

         P \(⋮\)21   (2) 

    Từ (1) và (2) \(\Rightarrow\)  P \(⋮\)15 và 21

  

 
15 tháng 10 2017

Giải:

\(A=4+4^2+4^3+4^4+...+4^{59}+4^{60}\)

\(\Leftrightarrow A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{59}+4^{60}\right)\)

\(\Leftrightarrow A=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)

\(\Leftrightarrow A=4.5+4^3.5+...+4^{59}.5\)

\(\Leftrightarrow A=5\left(4+4^3+...+4^{59}\right)⋮5\)

\(\Leftrightarrow A=4+4^2+4^3+4^4+...+4^{59}+4^{60}⋮5\)

Vậy \(A⋮5\).

Chúc bạn học tốt!

3 tháng 1 2017

\(A=4.\left(1+4+4^2\right)+4^4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)(24 số hạng,chia làm 6 nhóm,mỗi nhóm 3 số từ trái sang phải)

\(A=21.\left(4+4^4+...+4^{22}\right)\)

Vậy A chia hết cho 21.

Học tốt^^

3 tháng 1 2017

\(A=4.\left(1+4+4^2\right)+4^4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)(24 số hạng,chia làm 6 nhóm,mỗi nhóm 3 số từ trái sang phải)

\(A=21.\left(4+4^4+...+4^{22}\right)\)

Vậy A chia hết cho 21.

Học tốt^^