Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:4 = 5
-->Ta có
-20 = -20
<=> 25 - 45 = 16 - 36
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức :
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2
<=> (5 - 9/2)^2 = (4 - 9/2 )^2
=> 5 - 9/2 = 4 - 9/2
=> 5 = 4
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
1+1=2 là vì các bạn lấy ví dụ ra: 1 cái khăn + 1 cái khăn = 2 cái khăn đơn giản
câu dưới mình ko biết sorry nha
vì 1+1 thì nó bằng 2
trong trò oản tù tì xiên là 1 kéo là 2 nên hai cái đó bẳng nhau
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
= 1/4 + 1/16 + 1/64
= 16/64 + 4/64 + 1/64
= 16+4+1/64 = 21/64
Ta có : 1/3 = 21/63
MÀ 21/64 < 21/63 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64 )
= 1/4 + 1/16 + 1/64
= 16/64 + 4/64 + 1/64
= 16+4+1/64 = 21/64
Ta có : 1/3 = 21/63
MÀ 21/64 < 21/63 => 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
1+ 1 = 1 vì 1 cái đũa + 1 cái đũa = 1 đôi đũa
5=4 vì ko bik
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(...\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)
\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)
viết la mã:
4 la mã là IV
5 la mã là V
ta có IV - V = I ( trừ 1 chữ V)
I la mã là 1
Trả lời :
Viết các số dưới dạng số Lam mã :
4 : IV
5 : V
1 : I
4 - 5 = 1 → IV - V = I
( trừ chưx V : IV - V = I
V= I )