Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
a)Goi day so la a; a+1; a+2; ...; a+n
Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n
Goi so do la a+k (k thuoc N va k>=1 va k <=n)
=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n
b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6
Xin chém:(ko cần Đi-rích-lê nhưng cũng gần giống)
Gọi 39 số liên tiếp đó là x1;x2;x3;...;x39x1;x2;x3;...;x39 và xi=xi−1+1xi=xi−1+1 với 2⩽xi⩽392⩽xi⩽39
Trong 39 số đó chắc chắn tồn tại 1 số nhỏ nhất chia hết cho 10 và 39 số đó đều khác 0.
Gọi số nhỏ nhất chia hết cho 10 đó là xjxj và j⩽10j⩽10
Vậy có ít nhất 29 số lớn hơn xjxj.
Gọi tổng các chữ số của xjxj là a
Xét 11 số xj;xj+1;xj+2;...;xj+9;xj+19;xj+29xj;xj+1;xj+2;...;xj+9;xj+19;xj+29 có tổng các chữ số lần lượt là a;a+1;a+2;...;a+9;a+10;a+11
Vì đó là 11 số liên tiếp nên tồn tại 1 số trong dãy a;a+1;a+2;...;a+9;a+10;a+11 chia hết cho 11
Vậy ta có đpcm
1, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)
\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)
Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)
2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)
Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6
Mà 24 chia hết cho 6
=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho
3/ giống bài 2
4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6
Vì tổng 3 số tự nhiên liên tiếp là 1 số lẻ => trong 3 số đó có 2 số chẵn và 1 số lẻ
Gọi 3 số đó là 2k+2; 2k+3; 2k+4 (k thuộc N)
Tích 3 số trên là: (2k+2).(2k+3).(2k+4)
Vì (2k+2).(2k+3).(2k+4) là tích 3 số tự nhiên liên tiếp nên (2k+2).(2k+3).(2k+4) chia hết cho 3 (1)
Do (2k+2).(2k+4) là tích 2 số chẵn liên tiếp nên (2k+2).(2k+4) chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 => (2k+2).(2k+3).(2k+4) chia hết cho 24
=> đpcm
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?