Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)Ta có :
\(10^{30}=\left(10^3\right)^{10}=1000^{10}< 1024^{10}=\left(2^{10}\right)^{10}=2^{100}\) \(\left(1\right)\)
\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.\left(2^9\right)^7=2^{31}.64.512^7\) \(\left(2\right)\)
\(10^{31}=2^{31}.5^3.5^{28}=2^{31}.125.\left(5^4\right)^7=2^{31}.125.625^7\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra \(10^{30}< 2^{100}< 10^{31}\) ( đocm )
\(b)\) Ta có :
\(10^{30}\) là số nhỏ nhất có 31 chữ số
\(10^{31}\) là số nhỏ nhất có 32 chữ số
Mà \(10^{30}< 2^{100}< 10^{31}\)
\(\Rightarrow\)\(2^{100}\) có 31 chữ số
Vậy \(2^{100}\) có 31 chữ số
Chúc bạn học tốt ~
1030=(103)10=100010
2100=(210)10=102410
Vì:100010<102410 suy ra 1030<2100
Mà 1030<1031(nhiều hơn 1 số 0)
Mà 1030<2100 24 đơn vị
suy ra:1030<2100<1031
a) gọi \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
gọi \(B=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)
b) Ta thấy \(\frac{1}{37}< \frac{1}{35}< \frac{1}{31}< \frac{1}{30}\), \(\frac{1}{61}< \frac{1}{53}< \frac{1}{47}< \frac{1}{45}\)
Do đó : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}.3+\frac{1}{45}.3=\frac{1}{2}\)
c) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
Ta thấy vế trong ngoặc nhỏ hơn 1
\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>48\)
1030=(103)10=100010<102410=(210)10=2100
2100=231.269=231.26.263=231.64.(29)7=231.64.5127
1031=231.531=231.53.528=231.125.(54)7=231.125.6257
231.64.5127<231.125.6257
=>1030<2100<1031
1030 là số nhỏ nhất có 31 chữ số
1031 là số nhỏ nhất có 32 chữ số
=>2100 có 31 chữ số
vậy 2100 có 31 chữ số
\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.512^7\)
\(< 2^{31}.125.625^7=2^{31}.5^3.5^{28}=2^{31}.5^{31}=10^{31}\)
Vậy \(2^{100}< 10^{31}\)