Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯCLN\left(2n+1;2n+3\right)\)
\(\Rightarrow2n+1⋮d;2n+3⋮d\)
\(\Rightarrow2n+3-2n-1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=2\)
Mà \(2n+1;2n+3\) là các số lẻ nên \(d=1\)
=> đpcm
a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)
\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)
Xét 2 biểu thức :
\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)
\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)
\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Ok để mình giúp bạn
Gọi d là ước chung lớn nhất của (2n+1, 2n+3)
=> 2n+1 chia hết cho d
2n+3 cũng chia hết cho d
Trừ đi => 2 chia hết cho d
=> d =1 hoặc 2
Nếu d=2 => 2n+1; 2n+3 chia hết cho 2
=> Vô lí do 2n+1; 2n+3 là 2 số lẻ
=> d=1
=> (2n+1; 2n+3)=1
=> 2n+1 và 2n+3 nguyên tố cùng nhau.
GỌI d LÀ UCLN CỦA (2n+1;2n+3)(d\(\in\)N*)
=>\(2n+1⋮d\)và\(2n+3⋮d\)
=>\(\left(2n+3-2n-1\right)⋮d\)
=>\(2⋮d\)
mà \(2n+1\)lẻ => d lẻ => d=1
=>\(2n+1\)và\(2n+3\)là 2 số nguyên tố cùng nhau
Đặt ƯCLN(2n+1; 2n+3) = d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2 chia hết cho d
=> d \(\in\) Ư(2) = {1; 2}
Mà 2n + 1 và 2n + 3 là hai số lẻ nên ước chung lớn nhất của chúng ko thể là 2.
Vậy d = 1 nên 2n + 1 và 2n + 3 nguyên tố cùng nhau
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi d là ƯCLN của 2n + 1 và 2 n + 3
Ta có : 2n + 1 chia hết cho d
2n + 3 chia hết cho d
=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
2 chia hết cho d => d là Ư của 2
Mà Ư(2) = { 1 ; 2 }
Mà d lẻ => d = 1
Vậy 2 n + 1 và 2n + 3 nguyên tố cùng nhau
a) gọi d là UC(2n+1;6n+5)
2n+1 chia hết cho d nên 3(2n+1)=6n+3 cũng chia hết cho d
(6n+5)-(6n+3) chia hết cho d
vậy 2 chia hết cho d mà d thuộc U(2)={1;2}
2n+1 và 6n+5 đều là số lẻ nên d =1
vậy 2 số trên là 2 số nguyên tố cúng nhau
b) tương tự như câu a
tích mình nhé Hoa!!!!!!!!!!!!
Gọi d là ƯC(2n+1;2n+3)
=> 2n+3 - ( 2n + 1) chia hết cho d
=> 2 chia hết cho d
Mà 2n+3 là số lẻ
=> d=1
Vậy ............
vậy d=1 ạ