Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(21^{10}-1\)
\(=\left(21^5\right)^2-1^2\)
\(=\left(21^5+1\right)\left(21^5-1\right)\)
Có \(21^5+1=B\left(2\right)\Rightarrow\)Đặt \(21^5+1=2k\)
\(\Rightarrow21^{10}-1=2k\left(21^5-1\right)=2k.\left(...00\right)\)chia hết cho 200
Vậy ...
Có:
212 đồng dư 41(mod200)
(212)5 đồng dư 415 (mod200) đồng dư 1(mod200)
hay 2110 đồng dư 1(mod200)
=>2110-1 đồng dư 1-1(mod200)
=>2110 chia hết chon200
nếu bạn là hs chuyên toán thì mình giải theo cách này
ta thấy 200=8.25 (phân tích thừa số nguyên tố)
ta cần chứng minh 2110-1 đông dư 0 (mod8) ta co 212 đồng dư 1 (mod 8) <=> 2110-1 đồng dư o mod 8 (1)
2110-1 dong du 0 (mod 25) ta có 215 đồng dư 1 (mod 25) <=> 2110-1 đồng dư 0 mod 25 (2)
từ (1) và (2)
tao suy ra..............
-
Ta có: 2110 - 1 = (21 - 1)(219 + 218 + 217 + ... + 21 + 1)
= 20.10M (M ∈ N)
= 200.M chia hết cho 200.
Bài 2 thôi em dùng đồng dư cho chắc:v
a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)
Suy ra đpcm.
b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)
Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)
Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)
Suy ra đpcm
c) Do 41 là số nguyên tố và (2;41) = 1 nên:
\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)
Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)
Suy ra đpcm.
d) Tương tự
\(21^2\equiv1\left(mod8\right)\Leftrightarrow21^{10}\equiv1^5=1\left(mod8\right)\\ \Leftrightarrow21^{10}-1\equiv0\left(mod8\right)\\ \Leftrightarrow21^{10}-1⋮8\left(1\right)\\ 21^5\equiv1\left(mod25\right)\Leftrightarrow21^{10}\equiv1^2=1\left(mod25\right)\\ \Leftrightarrow21^{10}-1\equiv0\left(mod25\right)\\ \Leftrightarrow21^{10}-1⋮25\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow21^{10}-1⋮25\cdot8=200\)
\(21^{10}-1\)
\(=\left(20+1\right)^{10}-1\)
\(=20^{10}+1^{10}-1\)
\(=20^{10}+\left(1-1\right)\)
\(=\left(20^2\right)^5\)
\(=400^5\)
\(=\left(200.2\right)^5\)
\(=200^5.2^5⋮200\left(đpcm\right)\)
21^10 -1
=(21^5)^2-1^2
=(21^5+1)(21^5-1)
Có 21^5+1=B suy rađặt 21^5+1=2k
suy ra 21^10=2k(21^5-1)=2k