K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

19^19 + 69^19 chia hết cho 44
Ta có a^n + b^n =(a + b)[a^(n - 1) - a^(n - 2).b + a^(n - 3).b^2 - ......+b^(n - 1) với n lẻ
19^19 + 69^19 = (19 + 69)(19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
Vì 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44.

25 tháng 11 2018

\(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ (bạn không cần chứng minh đâu)

Ta có: \(\left(19^{19}+69^{19}\right)⋮\left(19+69\right)\Rightarrow19^{19}+69^{19}⋮88\Rightarrow19^{19}+69^{19}⋮44\)

9 tháng 11 2017

a) 85+211

=(23)5+211=215+211

=211(24+1)

=211.17 (chia hết cho 17 )            

Vậy 85+211 chia hết cho 17

b)Ta có a^n + b^n

=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ 
19^19 + 69^19

= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44

21 tháng 11 2018

f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x2 )

f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x ) ( 1 + x )

Áp dụng định lý Bezout ta có 2 đa thức dư :

+) f(1) = 12010 + 120 + 119 + 1 + 1 = 5

+) f(-1) = (-1)2010 + (-1)20 + (-1)19 - 1 + 1 = 1

Vậy có 2 đa thức dư là f(1) = 5 và f(-1) = 1

4 tháng 7 2019

#)Giải :

(Làm ngắn gọn)

\(VT=7\left(25^n-6^n\right)+19.6^n\)

Dễ thấy \(25^n-6^n⋮\left(25-16\right)=19\)

\(\Rightarrowđpcm\)

4 tháng 7 2019

#)Giải : 

Đặt \(A=7,5^{2n}+12,6^n\)

Với \(n=0\Rightarrow A\left(0\right)=19⋮19\)

Giả sử \(A\left(n\right)⋮19\)với \(n=k\Rightarrow A\left(k\right)=7.5^{2k}+12.6^k⋮19\)

Ta đi chứng minh \(A\left(n\right)⋮19\)với \(n=k+1\)

\(\Rightarrow A\left(k+1\right)=7.5^{2\left(k+1\right)}+12.6^{k+1}\)

\(\Rightarrow A\left(k+1\right)=7.5^{2k}.5^2+12.6^n.6\)

\(\Rightarrow A\left(k+1\right)=7.5^{2k}.6+7.5^{2k}.19+12.6^n.6\)

\(\Rightarrow6A\left(k\right)+7.5^{2k}.19⋮19\)

\(\Rightarrow7.5^{2n}+12.6^n⋮19\)

\(\Rightarrowđpcm\)

                                                      Bài giải    :

8.1 x+y=xy

⇒x-xy+y=0

⇒x(1-y)+(y-1)+1=0

⇒(x-1)(1-y)+1=0

⇒(x-1)(y-1)-1=0

⇒(x-1)(y-1)=1

⇒x-1, y-1 là ước của 1

⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1

⇒(x;y)=(2;2),(0;0)

 8.3. 5xy-2y²-2x²+2=0

⇔(x-2y)(y-2x)+2=0

⇔(x-2y)(2x-y)=2

⇒x-2y và 2x-y là ước của 2

Hình như tui nhầm bài thì phải???

Ta có: \(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\) \(=n\left(n^4-n^2-4n^2+4\right)\) \(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\) \(=n\left(n^2-1\right)\left(n^2-4\right)\) \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120. => \(n^5-5n^3+4n⋮120\) Vậy ...

 A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5.
Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

24 tháng 7 2019

Bài 2 phải là chứng minh chia hết cho 5 chứ nhỉ 

24 tháng 7 2019

Bài 2:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)

2 tháng 11 2016

(n+7)- (n-5)2 = n2+49 - n2+ 25 = 24 

vậy( n+7)- (n-5)2 chia hết cho 24

28 tháng 6 2019

Ta có:

\(F\left(1\right)=\left(1-1+1\right)^{1994}+\left(1+1-1\right)^{1994}-2=0\)

\(\Rightarrow\)x=1 là 1 nghiệm của phương trình F(x)=0=> F(x) chia hết cho x-1

Đa thức chia có bậc 2 nên đa thức dư có bậc không vượt quá 1. 
Gọi đa thức dư là : x + a, có : 

\(F\left(x\right)=\left(x^2-1\right)Q\left(x\right)+x+a\)

F(x) chia hết cho x-1=> F(1)=0<=>a+1=0<=>a=-1