Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
Điều phải CM đúng với n = 1 , khi đó , ta có :
161 - 15.1 - 1 = 0 ⋮225
Gỉa sử điều phải CM đúng với : n = k , ta có :
16k - 15.k - 1 ⋮225
Ta CMR điều phải CM cũng đúng với n = k + 1 , Ta có :
16k+1 - 15( k + 1) - 1
= 16.16k - 15k - 15 - 1 = ( 16k - 15k - 1) + 15.16k - 15
( Vì 16.16k = ( 15 + 1)16k = 16k + 15.16k )
Theo giả thiết trên thì : 16k - 15k - 1 ⋮ 225
Còn : 15.16k - 15 = 15( 16k - 1)
Mà : 16k - 1 ⋮( 16 - 1)
⇒15( 16k - 1) ⋮ 15.15 = 225
⇒ đpcm
Giải:
Với n=1 thì 16n – 15n – 1 = 16 – 15 – 1 = 0 ⋮ 225
Giả sử 16k – 15k – 1 ⋮ 225
Ta chứng minh 16k+1 – 15(k+1) – 1 ⋮ 225
Thực vậy: 16k+1 – 15(k+1) – 1 = 16.16k – 15k – 15 – 1
= (16k – 15k – 1) + 15.16k – 15
Theo giả thiết qui nạp 16k – 15k – 1 ⋮ 225
Còn 15.16k – 15 = 15(16k – 1) ⋮ 15.15 = 225
Vậy 16n – 15n – 1 ⋮ 225.
chứng minh theo pp quy nạp
chứng minh đúng với n=1
giả sử đúng với n=k
cần chứng minh đúng với n=k+1
Ta có :
\(5n^3+15n^2+10\)
= \(5n.\left(n^2+3n+2\right)\)
= \(5n.\left(n^2+n+2n+2\right)\)
=\(5n.\left(n.\left(n+1\right)+2.\left(n+1\right)\right)\)
=5n.\(\left(n+1\right).\left(n+2\right)\)
Vì n.(n+1).(n+2) lac tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n.(n+1).(n+2) chia hết cho 6
=> 5.(n+1).(n+2) chia hết cho 30
Hay \(5n^3+15n^2+10n\) chia hết cho 30
\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)\)
\(=5n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
hay \(5n\left(n+1\right)\left(n+2\right)⋮30\)
Nhận thấy : \(323=17.19\)và ƯCLN ( 17 ; 19 ) = 1 nên ta chứng minh \(\left(20^n-1+16^n-3^n\right)\)\(⋮\)\(17\)và \(19\)
Ta có :
\(20^n-1⋮\left(20-1\right)=19;16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn ) (1)
Mặt khác :
\(\left(20^n+16^n+3^n+1=20^n-3^n+16^n-1\right)\)
Và \(20^n-3^n⋮\left(20-3\right)=17;16^n-1⋮\left(16+1\right)=17\) (2)
Từ (1) và (2) suy ra đpcm