K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2023

1/20 .21 + 1/22 .23 + .... + 1/79 .80

= 1/20 - 1/21  + 1/22 - 1/23 + .......... + 1/79 - 1/80

= 1/20 - 1/80

= 3/80

Ta thấy : 3/80 < 1 

=> 1/20 . 21 + 1/22 . 23 + ........ + 1/79 . 80 <1 (ĐPCM)

19 tháng 5 2017

Đặt A=1/21+1/22+...+1/60=(1/21+1/22+...+1/40)+(1/41+1/42+...+1/60)

Ta có:1/21>1/40, 1/22>1/40,..., 1/39>1/40

=>1/21+1/226+...+1/40>1/40+1/40+...+1/40=1/40.20=1/2

         1/41>1/60, 1/42>1/60,...,1/59>1/60

=>1/41+1/42+...+1/60>1/60+1/60+...+1/60=1/60.20=1/3

=>1/21+1/22+...+1/60>1/2+1/3=5/6>11/15

=>A>11/15 (1)

Lại có: 1/21<1/20, 1/22<1/20,...,1/40<1/20

=>1/21+1/22+...+1/40<1/20+1/20+...+1/20=1/20.20=1

           1/41<1/40, 1/42<1/40,...,1/60<1/40

=>1/41+1/42+...+1/60<1/40+1/40+...+1/40=1/40.20=1/2

=>1/21+1/22+...+1/60<1+1/2=3/2

=>A<3/2 (2)

Từ (1) và (2)

=>11/15<A<3/2

=>11/15<1/21+1/22+...+1/60<3/2 (đpcm)

13 tháng 3 2018

Bạn Vũ Thị Nguyên Mai trả lời đúng rùi

6 tháng 4 2017

Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)

Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40

      1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)

      A>1/40x20=1/2

      A>1/20  (1)

Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40

      1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40

      1/21x20>A

      20/21>A.Mà 1>20/21

    1>A   (2)

Từ (1) và (2) ta có : 1/2<A<1(đpcm)

Vậy bài tôán đđcm

6 tháng 4 2017

\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng      \(\)

\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng

\(\frac{1}{21}>\frac{1}{40}\)

\(\frac{1}{22}>\frac{1}{40}\)

\(.....\)

\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)

\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng 

\(\Rightarrow\frac{1}{2}< A< 1\)

Cho S = 1/21 + 1/22 + 1/23 +... + 1/60

S1=1/21 + 1/22 +..+ 1/40 (20 số hạng); S2= 1/41 + 1/42 +... + 1/60 (20 số hạng)

* Ta thấy: S> 1/40 x 20 = 1/2 (vì 1/40 = 1/40, 19 số hạng kia đều lớn hơn 1/40); S> 1/60 x 20 = 1/3

\(\Rightarrow\)S > 1/2 + 1/3 = 5/6 = 25/30 > 22/30 = 11/15

Vậy 1/21 + 1/22 + ... + 1/60 > 11/15

* Ta thấy: S1 < 1/21 x 20 = 20/21(vì 1/20 = 1/20, 19 số hạng còn lại đều bé hơn 1/21); S< 1/41 x 20 = 20/41

\(\Rightarrow\)S < 20/21 + 20/41 = 1240/861 < 3/2 (đoạn này thì bạn phải dùng máy tính chứ mik ko bt tính nhanh kiểu j)

Ta có đpcm

29 tháng 5 2016

khoq thế

29 tháng 5 2016

Lê Văn Đức loại như mày chỉ copy bài là giỏi thoy

10 tháng 8 2020

Đặt \(A=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}\)

\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+..+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A>20.\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{39.40}\right)+40.\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)

\(A>20\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+40\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{5}{6}>\frac{11}{15}\)

Mặt khác : \(A< 40\cdot\left(\frac{1}{20.21}+\frac{1}{21.22}+...+\frac{1}{38.40}\right)+60\cdot\left(\frac{1}{40.41}+\frac{1}{41.42}+...+\frac{1}{59.60}\right)\)

\(A< 40\cdot\left(\frac{1}{20}-\frac{1}{40}\right)+60\cdot\left(\frac{1}{40}-\frac{1}{60}\right)=\frac{3}{2}\)

Vậy ....

* Ta có : 1/21 >1/30 ;1/22 >1/30 ;...;1/29 >1/30 

=> 1/21 +1/22 +...+1/29 +1/30 >1/30 +1/30 +...+1/30 =10/30 =1/3    (1)

1/31 >1/40 ;1/32 >1/40 ;...;1/39 >1/40 

=> 1/31 +1/32 +...+1/39 +1/30 >1/40 +1/40 +...+1/40 =10/40 =1/4    (2)

Từ (1) và (2) 

=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 >1/3 +1/4 

=> 1/21 +1/22 +1/23 +...+1/40 >7/12   (*)

* Ta có : 1/21 <1/20 ;1/22 <1/20 ;...;1/30 <1/20 

=> 1/21 +1/22 +...+1/29 +1/30 <1/20 +1/20 +...+1/20 =10/20 =1/2   (3)

1/31 <1/30 ;1/32 <1/30 ;...;1/40 <1/30 

=> 1/31 +1/32 +...+1/39 +1/40 <1/30 +1/30 +...+1/30 =10/30 =1/3   (4)

Từ (3) và (4) 

=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 <1/2 +1/3 

=> 1/21 +1/22 +1/23+...+1/40 <5/6     (**)

Từ (*) và (**) ta có : 7/12 <1/21 +1/22 +1/23 +...+1/40 <5/6   (đpcm)

9 tháng 5 2019

Bài hơi dài , thông cảm

Ta có : \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\frac{1}{23}>\frac{1}{30};...;\frac{1}{29}>\frac{1}{30}\)

\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)

\(>\frac{10}{30}=\frac{1}{3}(1)\)

Ta có  : \(\frac{1}{31}>\frac{1}{40},\frac{1}{32}>\frac{1}{40},...,\frac{1}{39}>\frac{1}{40}\)

\(\Rightarrow A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)

\(>\frac{10}{40}=\frac{1}{4}(2)\)

Từ 1 và 2 \(\Rightarrow A>\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{7}{12}\)

Ta có : \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...;\frac{1}{30}< \frac{1}{20}\)

\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}< \frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

\(< \frac{10}{20}=\frac{1}{2}(3)\)

Ta lại có : ....

Làm tiếp đi :v