K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a) ta có : \(\left(1-2x\right)\left(x-1\right)-5=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6=-\left(2x^2-3x+6\right)=-\left(\left(\sqrt{2}x\right)^2-2.\sqrt{2}.\dfrac{3}{2\sqrt{2}}x+\left(\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)\)

\(=-\left(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{39}{8}\right)=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)

ta có : \(\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) với mọi \(x\)

\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}< 0\) với mọi \(x\)

vậy \(\left(1-2x\right)\left(x-1\right)-5< 0\) (đpcm)

b) ta có : \(-x^2-y^2+2x+2y-3\)

\(=\left(-x^2+2x-1\right)+\left(-y^2+2y-1\right)-1\)

\(=-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-1=-\left(x-1\right)^2-\left(y-1\right)^2-1\)

ta có : \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge\forall x\\\left(y-1\right)^2\ge\forall y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\left(x-1\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\)

\(\Rightarrow-\left(x-1\right)^2-\left(y-1\right)^2\le0\) với mọi \(x;y\)

\(\Leftrightarrow-\left(x-1\right)^2-\left(y-1\right)^2-1\le-1< 0\) với mọi \(x;y\)

vậy \(-x^2-y^2+2x+2y-3< 0\) (đpcm)

8 tháng 10 2017

\(a,A=\left(1-2x\right)\left(x-1\right)-5\)

\(=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6\)

\(=-\left(2x^2-3x+\dfrac{9}{8}\right)-\dfrac{39}{8}\)

\(=-\left[\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\dfrac{3}{2\sqrt{2}}+\left(\dfrac{3}{2\sqrt{2}}\right)^2\right]-\dfrac{39}{8}\)

\(=-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\)

Ta có :

\(-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2\le0\) \(\Rightarrow-\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2-\dfrac{39}{8}\le-\dfrac{39}{8}\)

Hay A \(\le-\dfrac{39}{8}\)

Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{2}x-\dfrac{3}{2\sqrt{2}}\right)^2=0\)

\(\Leftrightarrow\sqrt{2}x-\dfrac{3}{2\sqrt{2}}=0\) \(\Leftrightarrow\sqrt{2}x=\dfrac{3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{3}{2\sqrt{2}}:\sqrt{2}\)

\(\Leftrightarrow x=\dfrac{3}{4}\)

Vậy \(Min_A=-\dfrac{39}{8}\Leftrightarrow x=\dfrac{3}{4}\)

13 tháng 6 2016

Ta biến đổi 1 tí nhé

\(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

Tới đây dễ dàng áp dụng BĐT \(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Leftrightarrow\frac{3}{a+b}\le\frac{3}{4}.\frac{1}{a}+\frac{3}{4}.\frac{1}{b}\left(1\right)\)

\(\Leftrightarrow\frac{2}{b+c}\le\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{c}\left(2\right)\)

\(\Leftrightarrow\frac{1}{a+c}\le\frac{1}{4}.\frac{1}{a}+\frac{1}{4}.\frac{1}{c}\left(3\right)\)

Cộng vế với vế của (1), (2), (3) suy ra 

\(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{3}{4}\cdot\frac{1}{a}+\frac{3}{4}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{b}+\frac{1}{2}\cdot\frac{1}{c}+\frac{1}{4}\cdot\frac{1}{a}+\frac{1}{4}\cdot\frac{1}{c}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{a}+\frac{5}{4}\cdot\frac{1}{b}+\frac{3}{4}\cdot\frac{1}{b}\)

\(\Leftrightarrow\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\right)\)

\(\Leftrightarrow Dpcm\)

8 tháng 11 2017

Áp dụng BĐT Cô-si cho 2 số dương, ta có:

\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)

Chứng minh tương tự, ta có

\(18y+\frac{2}{y}\ge12\)

\(18z+\frac{2}{z}\ge12\)

Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)

Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)

Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)

                           \(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

3 tháng 7 2017

Ta có: \(5^2S=1+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)

\(5^2S-S=1-\frac{1}{5^{2014}}\)

\(=>S=\frac{1}{24}-\frac{1}{24.5^{2014}}< \frac{1}{24}\)