Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
A = 1 + 2 + 22 + 23 + 24 + ..... + 22021
2A = 2 + 22 + 23 + 24 + 25 + ..... + 22022
2A - A = ( 2 + 22 + 23 + 24 + 25 + ..... + 22022 ) - ( 1 + 2 + 22 + 23 + 24 + ..... + 22021 )
A = 22022 - 1
\(23\left(x-1\right)+19=65\)
\(23\left(x-1\right)=65-19\)
\(23\left(x-1\right)=46\)
\(x-1=46:23\)
\(x-1=2\)
\(x=2+1\)
\(x=3\)
\(5x+3x=88\)
\(x\left(5+3\right)=88\)
\(x.8=88\)
\(x=88:8\)
\(x=11\)
\(x^3=64\)
\(x^3=4^3\)
\(\Rightarrow x=4\)
\(\left(5x-4\right):7-2=6\)
\(\left(5x-4\right):7=6+2\)
\(\left(5x-4\right):7=8\)
\(5x-4=8.7\)
\(5x-4=56\)
\(5x=56+4\)
\(5x=60\)
\(x=60:5\)
\(x=12\)
\(x^{50}=x\)
\(\Rightarrow x=1\)
\(4.2^x-3=125\)
\(4.2^x=125+3\)
\(4.2^x=128\)
\(2^x=128:4\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
k mk nha
Co Gai De Thuong
A = 2 + 22 + 23 + ... + 299 + 2100
= ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
= 2 x ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 x ( 1 + 2 + 22 + 23 + 24 )
= 2 x 31 + ... + 296 x 31
= 31 ( 2 + ... + 296 )
Vậy A chia hết cho 31
A = 2 + 22 + 23 + 24 + 25 + .... + 296 + 297 + 298 + 299 + 2100
A = [2 + 22 + 23 + 24 + 25] + ... + 295[2 + 22 + 23 + 24 + 25]
A = 62 + ... + 295.62
A = 2.31 + .... + 295.2.31
A = 31.2.[20 + 25 + ... +295]
=> A \(⋮31\)