K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2015

1/22+1/32+1/34+...+1/1002\(<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\Rightarrow dpcm\)

23 tháng 3 2020

1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 

= 1 - 1/2 + 1/2 - 1/4 +1/4 - 1/8+ 1/8- 1/16 + 1/16 - 1/32 + 1/32 - 1/64

= 1- 1/64

= 63/64

............

Sao mk thấy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64  > 1/3 chứ ko phải < 1/3 bn ạ

24 tháng 4 2016

đặt A=1/2^2+1/3^2+1/4^2+...+1/100^2

B=1/2.3+1/3.4+...+1/99.100

=1/1.2+1/2.3+1/3.4+...+1/99.100

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1<2 (1)

A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (2)

từ (1),(2)=>A<2

14 tháng 5 2017

Ta có:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\) = \(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}\) \(< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\) \(=1-\frac{1}{100}=\frac{99}{100}\)

14 tháng 5 2017
hggfhfghh