Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sách bài tập toán quyển 1 có đó bạn trang 18 lật ra coi thử đi
Bài 1. x^2 \(\equiv\)8 (mod 0,1). (cmdd)
T tự: y^2 \(\equiv\)8 (mod 0,1)
=> x^2+y^2 \(\equiv\)8 (mod 0,1,2)
Mà 8z+6 \(\equiv\)8 (mod 6)
=> đpcm
\(x^2-y^2=2010\)
Với \(x\inℤ\)thì x^2 ; y^2 chia 4 dư 0 hoặc 1
x^2 - y^2 chia 4 dư 0 hoặc 1 hoặc 3 ( 1 )
mà 2010 chia 4 dư 2 (2)
từ (1) ; (2) Vậy phương trình vô nghiệm
\(pt\Leftrightarrow x^3+2000x-1=y^2\Leftrightarrow x^3-x+2001x-1=y^2\Leftrightarrow\left(x-1\right)x\left(x+1\right)+2001x-1=y^2\)
Vì \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮3\\2001x⋮3\end{cases}\Rightarrow}\)(x-1)x(x+1)+2001x-1 chia 3 dư 2 mà y2 chia 3 chỉ dư 0 hoặc 1 nên PT vô nghiệm
Vậy PT không có nghiệm nguyên
Vì \(x^2,y^2,z^2\)là các số chính phương nên chia 8 dư 0, 1, 4.
Suy ra \(x^2+y^2+z^2\)chia 8 được số dư là một trong các số : 0, 1,,3, 4, 6.
Mà 1999 chia 8 dư 7
Suy ra phương trình không có nghiệm nguyên
Dễ thấy VP chia hết chi 11 nên VT cũng phải chia hết cho 11
\(\Rightarrow1999y⋮11\)
\(\Rightarrow y⋮11\)
Mà vì y nguyên dương nên
\(\Rightarrow y\ge11\)
\(\Rightarrow1999y\ge11.1999\left(1\right)\)
Bên cạnh đó ta lại có x nguyên dương nên
\(\Rightarrow11x>0\left(2\right)\)
Từ (1) và (2) \(\Rightarrow11x+1999y>11.1999\)
Vậy bài toán không có nghiệm nguyên dương.
Dễ thấy \(VP⋮11\Rightarrow VT\)cũng chia hết cho 11
\(\Rightarrow1999y⋮11\)
\(\Rightarrow y\)cũng phải chia hết cho 11
Mà y là số dương nên: \(11\le y\)
\(\Rightarrow1999y=11.1999\) (1)
Mà bên cạnh đó, lại có x là số dương ,nên: 11x > 0 (2)
Từ (1) và (2),ta suy ra: \(11x+1999y>11,1999\)
Vậy bài toán không có nghiệm nguyên dương