K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Hướng dẫn giải:

Gọi ƯCLN của 2n + 1 và 5n + 3 là d

⇒ (2n +1)⋮ d và (5n + 3)⋮ d

⇒ [2(5n + 3) - 5(2n + 1) ] ⋮ d

⇒ 1 ⋮ d, với ∀n ∈ N

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N 

4 tháng 7 2018

Hướng dẫn giải:

Gọi ƯCLN của 2n + 1 và 5n + 3 là d

⇒ (3n + 1) ⋮ d và (5n + 2) ⋮ d

⇒ [3(5n + 2) - 5(3n + 1)] ⋮ d

⇒ 1 ⋮ d, với ∀n ∈ N

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N 

24 tháng 5 2018

Hướng dẫn giải:

Gọi d là ƯCLN của 7n - 5 và 3n - 2

⇒ (7n - 5)⋮ d và (3n - 2)⋮ d

⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

8 tháng 8 2017

Hướng dẫn giải:

Gọi ƯCLN của –n + 3 và n - 4 là d

⇒ (-n + 3)⋮ d và (n - 4)⋮ d

⇒ [(-n + 3) +(n - 4)] ⋮ d

⇒ -1⋮ d

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho là tối giản với ∀n ∈ N 

27 tháng 4 2017

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

31 tháng 12 2019

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

13 tháng 11 2021

Gọi d=ƯCLN(-n+3,n-4)

\(\Rightarrow-n+3⋮d;n-4⋮d\\ \Rightarrow-n+3+n-4⋮d\\ \Rightarrow-1⋮d\\ \Rightarrow d=1\\ \RightarrowƯCLN\left(-n+3,n-4\right)=1\)

Vậy ...

 

24 tháng 6 2018

Hướng dẫn giải:

Gọi d là ƯCLN của 2n + 5 và 3n + 7

⇒ (2n + 5)⋮ d và (3n + 7)⋮ d

⇒ [3(2n + 5) - 2(3n + 7)] = 1⋮ d

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N 

7 tháng 2 2018

Hướng dẫn giải: 

Giả sử m, n là các số nguyên và ƯCLN(m, n) = 1 (vì Cách chứng minh phân thức là tối giản cực hay, có đáp án | Toán lớp 8 tối giản)

nếu d là ước chung m của m + n thì:

(m + n) d và m d

⇒ [(m + n) – m ] = n d

⇒ d ∈ ƯC (m,n) ⇒ d = 1(vì Cách chứng minh phân thức là tối giản cực hay, có đáp án | Toán lớp 8 tối giản) .

Vậy nếu phân thức Cách chứng minh phân thức là tối giản cực hay, có đáp án | Toán lớp 8 là phân thức tối giản thì phân thức Cách chứng minh phân thức là tối giản cực hay, có đáp án | Toán lớp 8 cũng là phân thức tối giản.