Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )
=> n3 + 2n \(⋮\)d ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )
Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )
Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d
=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d
=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d
=> n2 + 1 \(⋮\)d ( * )
=> n2 . ( n2 + 1 ) \(⋮\)d
=> n4 + n2 \(⋮\)d ( 4 )
Từ ( 3 ) và ( 4 ) => ( n4 + 2n2 ) - ( n4 + 2n ) \(⋮\)d
=> n2 \(⋮\)d ( 5 )
Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy : phân số đã cho tối giản
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
=> n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
=> (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d hay 1 chia hết cho d
Do đó (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (Đ.P.C.M)
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
=> n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết cho d hay n^2 +1 chia hết cho d (1)
=> (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
=> (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) => (n^2+1) - n^2 chia hết cho d hay 1 chia hết cho d
Do đó (n^3+2n ; n^4+3n^2+1) =1 hoặc -1 suy ra $\frac{n^3+2n}{n^4+3n^2+1}$n3+2nn4+3n2+1 là phân số tối giản (Đ.P.C.M)
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
ko biết làm
bye
đi đây