Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))
\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)
Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.
Do đó : 4k(k+1) chia hết cho 2.4=8
=> n chia 3 dư a (0<a <3)
=> n = 3b +a
=> n^2 = 9b^2 + 6ab + a^2 chia hết cho 3
=> a^2 chia hết cho3 mà 0<a <3
=> vô lý do ko có số nào thỏa mãn
=> giả sử sai
=> n^2 chia hết cho 3 <=> n chia hết cho 3b: c:Giả sử: n^2 là số lẻ và n là số chẵn
Vì n chẵn => n = 2k(k thuộc N*)
=>n^2 = 4k^2
=>n^2 là số chẵn(trái với giả thiết)
Vậy khi n^2 là số lè thì n là số lẻ
1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
a) Gọi n chẵn là 2a
⇒ n2 = 2a . 2a = 4a2 ⋮ 2
⇒ n chẵn thì n2 chẵn
Giả sử n chia hết cho 3
⇔n=3k(k∈N)
⇔\(n^2=\left(3k\right)^2=9k^2=3\cdot3k^2⋮3\)(trái với gt ban đầu)
=> ĐPCM
a: Điều kiện cần để n*n chia hết cho 3 là n là số tự nhiên và điều kiện đủ là n chia hết cho 3
b: Điều kiện cần để n*n chia hết cho 6 là n là số tự nhiên và điều kiện đủ là n chia hết cho 2 và 3
c: Điều kiện cần và đủ để a+b>4 là một trong 2 số a và b phải lớn hơn 2
a. Đúng, vì $9\vdots 3$ nên $n\vdots 9\Rightarrow n\vdots 3$
b. Sai. Vì cho $n=2\vdots 2$ nhưng $2\not\vdots 4$
c. Đúng, theo định nghĩa tam giác cân
d. Sai. Hình thang cân là 1 phản ví dụ.
e.
Sai. Cho $m=-1; n=-2$ thì $m^2< n^2$
f.
Đúng, vì $a\vdots c, b\vdots c$ nên trong $ab$ có chứa nhân tử $c$
g.
Sai. Hình bình hành là hình thang có 2 cạnh bên bằng nhau nhưng không phải hình thang cân.