K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2015

bn giở sách phát triển nâng cao ra là có mà

20 tháng 3 2015

ta đặt vế trái là A ta có:

A=1/2.2 .(1+1/2.2+1/3.3+1/4.4+...+1/50.50)

A< 1/2.2.(1+1/1.2+1/2.3+1/3.4+1/4.5+...+1/49.50)

A< 1/2.2.(1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/49-1/50)

A< 1/2.2.(1+1-150)

A< 1/2.2.99/50

A< 1/4.99/50

A< 99/200<100/200=1/2

=>A<1/2

13 tháng 8 2016

A= \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}\)

=> A= \(\frac{99}{100}>\frac{25}{26}\)

25 tháng 8 2017

A=1+1+1+...+1

A=100x1

A=100

17 tháng 5 2017

tự làm nha k tui đi

10 tháng 5 2017

Ta thấy:

1/2*2<1/1*2)vì 2*2>1*2).

1/3*3<1/2*3(vì 3*3>2*3).

...

1/8*8<1/7*8(vì 8*8>7*8).

=>1/2*2+1/3*3+1/4*4+...+1/8*8<1/1*2+1/2*3+1/3*4+...+1/7*8.

=>B<1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8.

=>B<1-1/8.

=>B<7/8.

Mà 7/8<1.

=>B<1.

Vậy B<1(đpcm).

10 tháng 5 2017

\(< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(\Rightarrow1-\frac{1}{8}< 1\)

=>B<1

11 tháng 8 2016

 Ta có : 1/[n x (n - 1)] = [(n - 1) - n] / [n x (n - 1)] = 1/n - 1/(n - 1) 
Áp dụng : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) 
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/48 - 1/49 + 1/49 - 1/50 
= 1 - 1/50 < 1 
Vậy : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Ta có : 1/(n x n) < 1/[(n - 1) x n] 
1/(2x2) < 1/(1x2) 
1/(3x3) < 1/(2x3) 
1/(4x4) < 1/(3x4) 
............. 
1/(49x49) < 1/(49x49) 
1/(50x50) < 1/(49x50) 
=> 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Vậy 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1

11 tháng 8 2016

Đặt B=1/1*2+1/2*3+...+1/99*100 

Ta thấy:

A=1/2*2+1/3*3+...+1/100*100<B=1/1*2+1/2*3+...+1/99*100   (1)

Ta lại có: 

B=1/1*2+1/2*3+...+1/99*100 

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (2)

Từ (1) và (2) ta có: A<B<1 <=>A<1

 

26 tháng 7 2016

\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)

\(A< \frac{1}{4}-\frac{1}{100}\)

\(A< \frac{6}{25}< \frac{1}{4}\)

27 tháng 7 2016

các bạn giải mau lên

19 tháng 6 2018

Ta có:

1/5×5 < 1/4×5

1/6×6 < 1/5×6

1/7×7 < 1/6×7

.........

1/100×100 < 1/99×100

=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 < 1/4×5 + 1/5×6 + 1/6×7 +.....+ 1/99×100

                                      = 1/4-1/5 + 1/5-1/6 + 1/6-1/7 +......+ 1/99-1/100

                                    = 1/4-1/100 < 1/4  

=> 1/5×5 + 1/6×6+1/7×7 +...+1/100×100<1/4  (1)

Lại có:

1/5×5 > 1/6×7

1/6×6 > 1/7×8

1/7×7 > 1/8×9

........

1/100×100 > 1/101×102

=> 1/5×5 + 1/6×6 + 1/7×7 +.....+ 1/100×100 > 1/5×6 + 1/6×7 + 1/7×8  +.....+1/100×101

                                   = 1/5-1/6 + 1/6-1/7 + 1/7-1/8 +.....+ 1/100 - 1/101

                                   = 1/5 - 1/101 > 1/5 - 1/30 = 1/6

=> 1/5×5 + 1/6×6 +1/7×7 +.....+ 1/100×100>1/6 (2)

Từ (1) và (2)

=> 1/6 < 1/5×5 +1/6×6+ 1/7×7 +...+1/100×100<1/4

19 tháng 6 2018

Đặt \(A=\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)

Có \(\frac{1}{5.5}< \frac{1}{4.5};\frac{1}{6.6}< \frac{1}{5.6};...;\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)(1)

Lại có :\(\frac{1}{5.5}>\frac{1}{5.6};\frac{1}{6.6}>\frac{1}{6.7};...;\frac{1}{100.100}>\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\left(2\right)\)

Từ (1) và (2) \(\RightarrowĐCCM\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2021.2021}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2021^2}\)

Xét : \(\frac{1}{k^2}\left(k\inℕ^∗\right)\)

\(=\frac{4}{4k^2}< \frac{4}{4k^2-1}=\frac{4}{\left(2k-1\right)\left(2k+1\right)}==2\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\)

Áp dụng cho biểu thức A,ta có :

\(A< 2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{4041}-\frac{1}{4023}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{4023}\right)=\frac{2}{3}-\frac{2}{4023}< \frac{2}{3}< \frac{3}{4}\)

18 tháng 7 2021

Yuriko

Cách này khó hiểu quá