Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)
1.
Đặt \(\sqrt{a^2+x^2}=m,\sqrt{a^2-x^2}=n\Rightarrow x^2=\frac{m^2-n^2}{2}\)
\(\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{a^4}{x^4}-1}=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\sqrt{\frac{(a^2+x^2)(a^2-x^2)}{x^4}}\)
\(=\frac{\sqrt{a^2+x^2}+\sqrt{a^2-x^2}}{\sqrt{a^2+x^2}-\sqrt{a^2-x^2}}-\frac{\sqrt{(a^2+x^2)(a^2-x^2)}}{x^2}\)
\(=\frac{m+n}{m-n}-\frac{mn}{\frac{m^2-n^2}{2}}=\frac{(m+n)^2}{m^2-n^2}-\frac{2mn}{m^2-n^2}=\frac{m^2+n^2}{m^2-n^2}\)
\(=\frac{2a^2}{2x^2}=\frac{a^2}{x^2}\)
2.
\(=\left[\frac{(1-\sqrt{a})(1+\sqrt{a}+a)}{1-\sqrt{a}}+\sqrt{a}\right].\left[\frac{(1+\sqrt{a})(1-\sqrt{a}+a)}{1+\sqrt{a}}-\sqrt{a}\right]\)
\(=(1+\sqrt{a}+a+\sqrt{a})(1-\sqrt{a}+a-\sqrt{a})\)
\(=(a+2\sqrt{a}+1)(a-2\sqrt{a}+1)=(\sqrt{a}+1)^2(\sqrt{a}-1)^2\)
\(=(a-1)^2\)
3.
\(=\frac{3(1-x)}{\sqrt{1+x}.\sqrt{1-x}}:\frac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\frac{3(1-x)}{\sqrt{1-x^2}}.\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}=\frac{3(1-x)}{3+\sqrt{1-x^2}}\)
4. Bạn xem lại đề xem đã đúng chưa?
5.
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{\sqrt{b}(a+\sqrt{ab})+\sqrt{b}(a-\sqrt{ab})}{(a-\sqrt{ab})(a+\sqrt{ab})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\frac{2a\sqrt{b}}{a^2-ab}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}}.\frac{1}{a-b}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\)
\(=\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{1}{a+\sqrt{ab}}=\frac{\sqrt{a}+\sqrt{b}}{a+\sqrt{ab}}=\frac{1}{\sqrt{a}}\)
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
\(a,\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=\left(1+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1^2-\sqrt{a}^2=1-a\)
\(b,\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2-\frac{-\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)
\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(c,\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)=\left(3+\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\right)\left(3-\frac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)
\(=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\sqrt{a}^2=3-a\)
\(d,\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(\sqrt{a}+2\right)\left(2-\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)
\(\sqrt{\left(1+\sqrt{2}\right)^2}-1=|1+\sqrt{2}|-1=1+\sqrt{2}-1=\sqrt{2}\)
\(\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt[3]{\left(\sqrt{2}-5\right)^3}=|\sqrt{2}-3|+\sqrt{2}-5=3-\sqrt{2}+\sqrt{2}-5=-2\)
a,\(\left(\sqrt{6}-\sqrt{10}\right)\sqrt{4+\sqrt{15}}=\sqrt{6}.\sqrt{4-\sqrt{15}}-\sqrt{10}.\sqrt{4+\sqrt{15}}\)
=\(\sqrt{24+6\sqrt{15}}-\sqrt{40+10\sqrt{15}}=\sqrt{\left(\sqrt{15}+3\right)^2}-\sqrt{\left(\sqrt{15}+5\right)^2}\)
=\(\sqrt{15}+3-\sqrt{15}-5=-2\)
b,\(\left(\sqrt{3}+\sqrt{30}\right)\sqrt{10-\sqrt{41-4\sqrt{10}}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40-2\sqrt{40}+1}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{\left(\sqrt{40}-1\right)^2}}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40}+1}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{11-2\sqrt{10}}=\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{\left(\sqrt{10}-1\right)^2}\)
=\(\sqrt{3}\left(1+\sqrt{10}\right)\left(\sqrt{10}-1\right)=9\sqrt{3}\)
2,\(A=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}\left(1-\sqrt{a}\right)-\sqrt{a}+4}{1-a}\right)\)
\(A=\left(\frac{a+\sqrt{a}-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}-a-\sqrt{a}+4}{1-a}\right)=\left(\frac{\sqrt{a}+2}{\sqrt{a}+1}\right).\left(\frac{1-a}{4-a}\right)\)
\(A=\frac{\sqrt{a}-2}{\sqrt{a}+1}.\frac{a-1}{a-4}=\frac{\sqrt{a}-1}{\sqrt{a}+2}\)
b, ̣để \(A=\frac{1}{2}\Rightarrow\frac{\sqrt{a}-1}{\sqrt{a}+2}=\frac{1}{2}\Leftrightarrow2\sqrt{a}-2=\sqrt{a}+2\Leftrightarrow\sqrt{a}=4\Leftrightarrow a=16\left(t.m\right)\)
Bạn oi bài 2 hàng A thú 2 phải là \(\frac{\sqrt{a}-2}{\sqrt{a}+1}\) mình nhầm
a) ĐKXĐ: x\(\ne\) 0;4
Ta có: Q= \(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
= \(\frac{4\sqrt{x}\cdot\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-1-2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
=\(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)= \(\frac{4\sqrt{x}\cdot\left(2+\sqrt{x}\right)}{2+\sqrt{x}}\cdot\frac{-\sqrt{x}}{3-\sqrt{x}}\)=\(\frac{-4}{3-\sqrt{x}}\)=\(\frac{4}{\sqrt{x}-3}\)
b) Q=-1 => \(\frac{4}{\sqrt{x}-3}=-1\)
<=> \(4=3-\sqrt{x}\)
<=> \(\sqrt{x}=-1\) (vô lí)
Vậy ko tìm được x.
B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)
Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)
cộng vế theo vế ta được: \(x+y=-x-y\)
\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)
\(\Leftrightarrow x^{2013}+y^{2013}=0\)
a,Ta có x =...
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)
x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)
x = 2
sau đó thay x=2 vào A nhé.
A=2014 !!!
a, \(\sqrt{8}+\sqrt{18}-\sqrt{\frac{1}{2}}=2\sqrt{2}+3\sqrt{2}-\frac{1}{2}\sqrt{2}\)
\(=\frac{9}{2}\sqrt{2}\)
b, \(\frac{3-\sqrt{3}}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\sqrt{3}-1+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+1\right)\) \(=\frac{2\sqrt{2}-\left(\sqrt{2}+1\right)^2}{\sqrt{2}+1}\)
\(=\frac{2\sqrt{2}-2-2\sqrt{2}-1}{\sqrt{2}+1}=-\frac{2+1}{\sqrt{2}+1}\)
c, PT xác định với mọi x nha!
\(\sqrt{x^2-2x+1}=3\) \(\Rightarrow x^2-2x+1=9\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(2x-8\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)
Vậy...
bạn tự kl