Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/m rằng trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
vào chtt có c/m đó
34658690
Cho tam giác ABC có đường trung tuyến được vẽ từ đỉnh A vuông góc với cạnh đối diện BC tại trung điểm D của BC.
2 tam giác vuông ADB,ADC bằng nhau vì có chung cạnh góc vuông AD , 2 cạnh góc vuông còn lại là DB = DC (vì D là trung điểm của BC)
=> 2 cạnh tương ứng AB = AC hoặc 2 góc tương ứng ABD = ACD => Tam giác ABC cân tại A
GIẢI
-Xét tam giac ABC và tam giác ACM:
AMchung
M1^=M2^=90
BM=CN(gt)
=> Tam giác ABC=tam giác ACM (2 cạnh góc vuông)
=> AB=AC(cạnh tương ứng)
=>Tam giác ABC cân
A B C D E O
Do O thuộc trung tuyến CD của tam giác ABC nên OC = 2/3 CD và OD = 1/3 CD
Do O thuộc trung tuyến BE của tam giác ABC nên OB = 2/3 BE và OE = 1/3 BE
Do CD = BE(theo đề ra) => 2/3 CD = 2/3 BE và 1/3 CD = 1/3 BE<=> OC = OB và OD = OE
Từ OC = OB => Tam giác BOC cân tại O => Góc OBC = Góc OCB (1)
Xét tam giác DOB và tam giác EOC có: OC = OB (chứng minh trên); Góc DOB = Góc EOC(đối đỉnh) ; OD = OE (chứng minh trên)
=> Tam giác DOB = Tam giác EOC(c.g.c) => Góc OBD = Góc OCE(2 góc tương ứng) (2)
Cộng từng vế của (1) và (2) ta được : Góc OBC + Góc OBD = Góc OCB + Góc OCE =>Góc DBC = Góc ECB
Mà A;D;B thẳng hàng và A;E;C thẳng hàng =>Góc ABC = Góc ACB =>Tam giác ABC cân tại A
Vậy nếu 1 tam giác có 2 đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.
Kí hiệu như hình vẽ
Tam giác ABC cân nên góc EBC = góc DCB (1)
Ta có + Góc ECB=180-CEB-EBC=90-EBC (2)
+Góc DBC=180-BDC-DCB=90-DCB (3)
Từ (1),(2),(3)=>Góc ECB=Góc DCB
Xét tam giác EBC và tam giác DCB có
+Góc EBC = Góc DCB (Chứng minh trên)
+BC-Cạnh chung
+Góc ECB=Góc DCB (Chứng minh trên)
=>Tam giác EBC=Tam giác DCB (g.c.g)
=>EC=DB (2 cạnh tương ứng )
=>Điều phải chứng minh
VẼ TAM GIÁC ABC CÂN TẠI A .2 ĐƯỜNG CAO BE,CF.
XÉT TAM GIÁC AEB VÀ AFC CÓ :
GÓC AEB =GÓC AFC =90* (DO BE ,CF LÀ ĐƯỜNG CAO)
GÓC AEF CHUNG
AB=AC (TAM GIÁC ABC CÂN TẠI A)
DO ĐÓ :TAM GIÁC AEB =TAM GIÁC AFC (G.C.G)
=>BE =CF (2 CẠNH TƯƠNG ỨNG )
Hình tự vẽ.
Vì\(\Delta ABC\)cân tại A
\(\Rightarrow AB=AC\)
Lấy\(BD\perp AC;CE\perp AB\)
Xét\(\Delta ABD\)và\(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90^0\)(Vì\(BD\perp AC;CE\perp AB\))
\(AB=AC\left(cmt\right)\)
\(\widehat{A}=\widehat{A}\)(góc chung)
Do đó:\(\Delta ABD=\Delta ACE\left(ch-gn\right)\)
\(\Rightarrow BD=CE\)(2 cạnh tương ứng)
Vậy trong một tam giác cân, hai đường cao ứng với hai cạnh bên thì bằng nhau.
P/s: Sai thì chỉ giúp. Cảm ơn.
Linz