Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với n = 1 ta có 3 ⋮ 3.
Giả sử n = k ≥ 1 , ta có : k3 + 2k ⋮ 3 ( GT qui nạp).
Ta đi chứng minh : n = k + 1 cũng đúng:
(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2
= (k^3+2k) + 3(k^2+k+1)
Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên)
+ 3(k^2+k+1) hiển nhiên chia hết cho 3
Vậy mệnh đề luôn chia hết cho 3.
b, Với n = 1 ta có 12 ⋮ 6.
Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6
Ta đi chứng minh : n = k+1 cũng đúng:
=> 13k.13 - 1 = 13(13k - 1) + 12.
Có: - 13(13k - 1) ⋮ 6 ( theo gt)
- 12⋮6 ( hiển nhiên)
> Vậy mệnh đề luôn đúng.
a: \(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1-1}{n+1}=\dfrac{n}{n+1}\)
\(a,n=1\Leftrightarrow\dfrac{1}{1.2}=\dfrac{1}{2}\left(đúng\right)\\ G\text{/}s:n=k\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}=\dfrac{k}{k+1}\\ \text{Với }n=k+1\\ \text{Cần cm: }\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}\\ \text{Ta có }VT=\dfrac{k}{k+1}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}\\ =\dfrac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}=VP\)
Vậy với \(n=k+1\) thì mệnh đề cũng đúng
Vậy theo pp quy nạp ta đc đpcm
- Với \(n=3\Rightarrow2^3>2.3+1\) (đúng)
Giả sử BĐT cũng đúng với \(n=k\ge3\) nghĩa là \(2^k>2k+1\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\)
Hay \(2^{k+1}>2\left(k+1\right)+1\Leftrightarrow2^{k+1}>2k+3\)
Thật vậy, ta có:
\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2\)
\(\Leftrightarrow2^{k+1}>2k+3+\left(2k-1\right)>2k+3\) ; \(\forall k\ge3\) (đpcm)
Lời giải:
$7.2^{2n-2}\equiv 2.2^{2n-2}\equiv 2^{2n-1}\pmod 5$
$\Rightarrow 7.2^{2n-2}+3^{2n-1}\equiv 2^{2n-1}+3^{2n-1}\pmod 5$
Mà $2^{2n-1}+3^{3n-1}\vdots (2+3=5)$ (do $2n-1$ lẻ)
$\Rightarrow 7.2^{2n-2}+3^{2n-1}\vdots 5$ (đpcm)