Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đổi phương trình thành:
\(\left(x^4+2x^2+1\right)-\left(x^3+x\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)
Với mọi \(x\in R\)ta có \(x^2+1>0\)
và \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Cả 2 nhân tử ở vế trái đều dương nên tích không thể bằng 0. Hay không tồn tại x thỏa mãn đề bài.
a) 5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y, z
=> đpcm
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z
=> đpcm
Lời giải:
$a^3+b^3=(a+b)^3-3ab(a+b)=2013$
$\Rightarrow (a+b)^3=3ab(a+b)+2013\vdots 3$
$\Rightarrow a+b\vdots 3$
$\Rightarrow (a+b)^3\vdots 27$ và $3ab(a+b)\vdots 9$
Do đó:
$2013=(a+b)^3-3ab(a+b)\vdots 9$
Điều này vô lý do $2013\not\vdots 9$
Vậy không tồn tại $a,b$ nguyên thỏa mãn đề.
2002 hay 2020 bạn
đề sai r nha bạn