K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

2002 hay 2020 bạn

19 tháng 10 2018

đề sai r nha bạn

16 tháng 7 2016

mk ko biết

Mình mới hok lớp 6

16 tháng 7 2016

Ta biến đổi phương trình thành:

\(\left(x^4+2x^2+1\right)-\left(x^3+x\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)

Với mọi \(x\in R\)ta có \(x^2+1>0\)

và \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Cả 2 nhân tử ở vế trái đều dương nên tích không thể bằng 0. Hay không tồn tại x thỏa mãn đề bài.

15 tháng 9 2020

a) 5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm 

b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 

= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1

= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x, y, z

=> đpcm

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:
$a^3+b^3=(a+b)^3-3ab(a+b)=2013$

$\Rightarrow (a+b)^3=3ab(a+b)+2013\vdots 3$

$\Rightarrow a+b\vdots 3$

$\Rightarrow (a+b)^3\vdots 27$ và $3ab(a+b)\vdots 9$

Do đó:

$2013=(a+b)^3-3ab(a+b)\vdots 9$ 

Điều này vô lý do $2013\not\vdots 9$

Vậy không tồn tại $a,b$ nguyên thỏa mãn đề.