\(\dfrac{2x}{x+3\sqrt{x}+2}+\dfrac{5\sqrt{x}+1}{x+4\sqrt{x}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{2x\left(\sqrt{x}+3\right)+\left(5\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+\left(\sqrt{x}+10\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x\sqrt{x}+6x+5x+11\sqrt{x}+2+x+11\sqrt{x}+11}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2x\sqrt{x}+12x+22\sqrt{x}+13}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

biểu thức này có phụ thuộc vào biến nha bạn

10 tháng 9 2017

\(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)

\(=\frac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}+\frac{5\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x\left(\sqrt{x}+3\right)+\left(5\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+\left(\sqrt{x}+10\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2\sqrt{x^3}+6x+5x+11\sqrt{x}+2+x+11\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{12x+22\sqrt{x}+2\sqrt{x^3}+12}{6x+11\sqrt{x}+\sqrt{x^3}+6}\)

\(=\frac{2\left(6x+11\sqrt{x}+\sqrt{x^3}+6\right)}{6x+11\sqrt{x}+\sqrt{x^3}+6}\)

\(=2\) (ko phụ thuộc vào biến ) (đpcm)

25 tháng 4 2017

Hướng dẫn trả lời:

ĐKXĐ: 0 < x ≠ 1.

Đặt √x = a (a > 0 và a ≠ 1)

Ta có:

(2+√xx+2√x+1−√x−2x−1).x√x+x−√x−1√x=[2+aa2+2a+1−a−2a2−1].a3+a2−a−1a=[(2+a)(a−1)−(a−2)(a+1)(a+1)(a2−1)].(a+1)(a2−1)a=2a(a+1)(a2−1).(a+1)(a2−1)a=2

18 tháng 7 2019

\(R=\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\)

\(=\frac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}+\frac{5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

=\(\frac{2x\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}+\frac{5\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+10\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x\sqrt{x}+6x+5x+10\sqrt{x}+x+\sqrt{x}+10\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x\sqrt{x}+12x+21\sqrt{x}+10}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

@@@@@@@@@@@ Đề sai hay mình sai??@@@@@@@@@@

25 tháng 6 2017

Đề có sai ko v???

25 tháng 6 2017

đề o sai là biểu thức sai

7 tháng 6 2017

Bạn ơi. Bạn đã giải được bài này chưa vậy?

 

7 tháng 6 2017

\(P=\sqrt{x}+\dfrac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{\sqrt[3]{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}-x}{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\sqrt{x}}\)

\(=\sqrt{x}+\dfrac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)

Bài 3: 

a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)

\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)

9 tháng 8 2018

DK: x>1

\(P=\dfrac{1}{x}\left(\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2+\left(\sqrt{x+1}-\sqrt{x-1}\right)^2}{\left(\sqrt{x+1}-\sqrt{x-1}\right)\left(\sqrt{x+1}+\sqrt{x-1}\right)}\right)\)

\(P=\dfrac{1}{x}\left(\dfrac{x+1+x-1+2\sqrt{x^2-1}+x+1+x-1-2\sqrt{x^2-1}}{x+1-x+1}\right)\)\(P=\dfrac{1}{x}\cdot\dfrac{4x}{2}\)

\(P=2\)

9 tháng 8 2018

\(P=\dfrac{1}{x}\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\dfrac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)=\dfrac{1}{x}\left[\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2+\left(\sqrt{x+1}-\sqrt{x-1}\right)^2}{\sqrt{\left(x+1\right)}^2-\sqrt{\left(x-1\right)^2}}\right]=\dfrac{1}{x}\left(\dfrac{x+1+2\sqrt{\left(x-1\right)\left(x+1\right)}+x-1+x+1-2\sqrt{\left(x-1\right)\left(x+1\right)}+x-1}{x+1-x+1}\right)=\dfrac{1}{x}\cdot\dfrac{4x}{2}=\dfrac{1}{x}\cdot2x=2\)

=> Giá trị của biểu thức P không phụ thuộc vào biến

28 tháng 7 2021

A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)

A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)

A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)

A = 4

Vậy A không phụ thuộc vào x

Chúc bn học tốt!

Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)

\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)

\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)

\(=10\cdot\dfrac{2}{5}=4\)