Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5x(x - y) - y(5x - y)
A = 5x2 - 5xy - 5xy + y2
A = 5x2 - 10xy + y2 (1)
Thay x = -1; y = 3 vào (1), ta có:
5.(-1)2 - 10.(-1).3 + 32 = 44
B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)
B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy
B = 12y3 + 6xy (1)
Thay x = 5; y = -1 vào (1), ta có:
12.(-1)3 + 6.5.(-1) = -42
C = 5x2(x - y2) + 3x(xy2 - y) - 5x3
C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3
C = -2x2y2 - 3xy (1)
Thay x = -2; y = -5 vào (1), ta có:
-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230
D = 6x2(y2 - xy + 2x2y) - 3xy(2xy - x2 + 4x3)
D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y
D = -3x3y (1)
Thay x = 11; y = -1 vào (1), ta có:
-3.113.(-1) = 3993
bài 1:
a) 3 xy^2 - (-3 xy ^2)
= 3 xy^2 + 3 xy^2
= 6 xy^2
b) xy- 3xy + 5 xy
= (1- 3+ 5)xy
= 3 xy
c) \((\frac{12}{15}x^4y^2).\left(\frac{-5}{9}xy\right)\)
\(=\left(\frac{12}{15}.\frac{-5}{9}\right)\left(x^4x\right).\left(y^2y\right)\)
\(=\frac{-16}{45}x^5y^3\)
bài 2:
thay x= 1/2 vào biểu thức
\(3.\left(\frac{1}{2}\right)^2-5.\frac{1}{2}+1\)
\(=3.\frac{1}{4}-5.\frac{1}{2}+1\)
\(=\frac{3}{4}-\frac{5}{2}+1\)
\(=\frac{-3}{4}\)
~~ HỌC TỐT~~
1
\(A=5x^2+7y^2-3xy\)
\(+\)
\(B=6x^2+9y^2-8xy\)
\(P=11x^2+16y^2-11xy\)
\(A=5x^2+7y^2-3xy\)
\(-\)
\(B=6x^2+9y^2-8xy\)
\(Q=-x^2-2y^2+5xy\)
a) \(A=y^4+y^2+y^2+1=y^2\left(y^2+1\right)+\left(y^2+1\right)=\left(y^2+1\right)\left(y^2+1\right)=\left(y^2+1\right)>0\)với mọi y
b) \(B=\left(6x^2-2x^2\right)+\left(3xy-3xy\right)+\left(-2y^2+3y^2\right)+\left(-5+5\right)\)
\(=4x^2+y^2\ge0\)với mọi x, y
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.Trước hết ta thu gọn đa thứcA = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3 Thay x = 5; y = 4 ta được:A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.Vậy A = 129 tại x = 5 và y = 4.b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.Thay x = -1; y = -1 vào biểu thức ta được: M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8 = 1 -1 + 1 - 1+ 1 = 1. Tải xuống 0
a) Ta có : \(x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)\)
\(=x^2+2xy+y^3\)
Thay x = 5,y = 4 vào đa thức trên ta có : \(x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b) Thay \(x=-1,y=-1\) vào đa thức trên ta có :
(-1)(-1) - (-1)2(-1)2 + (-1)4(-1)4 - (-1)6(-1)6 + (-1)8(-1)8
= 1 - 1 + 1 - 1 + 1 =1
A = xy5 + 2xy5 - 8 + 3x4y - 3xy5 + 12 - 3x4y
A = ( 1 + 2 - 3 )xy5 + ( 3 - 3 )x4y + ( 12 - 8 )
A = 0xy5 + 0x4y + 4
A = 0 + 0 + 4
A = 4
=> Biểu thức A luôn nhận giá trị không đổi với mọi x và y ( đpcm )