K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

Chứng minh:

Ta có:  d'' // d ; d'// d ; c vuông góc với d

*  d' //d (giả thiết)

c vuông góc với d (giả thiết)

=> c vuông góc với d' (từ vuông góc đến song song)                     (1)

*  d'' // d (giả thiết)

c vuông góc với d (giả thiết)

=> c vuông góc với d'' (từ vuông góc đến song song)                     (2)

 Từ (1) và (2) suy ra d' // d'' (từ vuông góc đến song song)

d' // d ( giả thiết)

d'' // d (giả thiết)

Vậy d'' // d' // d

3 tháng 8 2019

Câu 1: (2 điểm) Cho biểu thức:  

                        Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

a, Rút gọn biểu thức

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3: (2 điểm)

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

a. Cho a, b, n thuộc N*. Hãy so sánh Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

b. Cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán. So sánh A và B.

Câu 5: (2 điểm)

    Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

    Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

Câu 1: (2 điểm) Cho biểu thức:  

                        Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

a, Rút gọn biểu thức

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

Câu 3: (2 điểm)

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

a. Cho a, b, n thuộc N*. Hãy so sánh Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán

b. Cho Tuyển tập đề thi học sinh giỏi lớp 6 môn Toán. So sánh A và B.

Câu 5: (2 điểm)

    Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

    Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

T.I.C.K nha

3 tháng 8 2019

ý là đề thi lớp 6 lên 7 á ?

7 tháng 1 2016

ủa bạn tính tam giác là tính cái j

7 tháng 1 2016

bạn lấy đâu ra câu b) và câu c) vậy

Hello mình 2k6 nè kết bn nhé !!!!

Vào đây nè !!!

https://loga.vn/bai-viet/on-tap-chung-minh-hai-duong-thang-song-song-3945

10 tháng 10 2019

ủa??? bọn mik nói cho bạn thì khác j bạn chép lời giải đâu.

10 tháng 10 2019

thế thì tôi hỏi làm cái gì 

TL

a) Ta có ˆBIKBIK^ là góc ngoài tại đỉnh II của ΔBAIΔBAI. 

Nên  ˆBIK=ˆBAI+ˆABI>ˆBAIBIK^=BAI^+ABI^>BAI^

Mà ˆBAK=ˆBAIBAK^=BAI^ 

Vậy ˆBIK>ˆBAKBIK^>BAK^ (1) 

b) Ta có ˆCIKCIK^ là góc ngoài tại đỉnh II của ΔAICΔAIC

nên ˆCIK=ˆCAI+ˆICA>ˆCAICIK^=CAI^+ICA^>CAI^

Hay  ˆCIK>ˆCAICIK^>CAI^  (2)

Từ (1) và (2) ta có:

ˆBIK+ˆCIK>ˆBAK+ˆCAIBIK^+CIK^>BAK^+CAI^

⇒ˆBIC>ˆBAC⇒BIC^>BAC^.

Hok tốt nha bn

#Kirito

14 tháng 10 2021

gõ lên cốc cốc học tập nhé bạn