Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)
\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)
\(\Leftrightarrow\text{0=0}\)
\(\Rightarrow\text{ĐPCM}\)
\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)
\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)
\(-2a+4b-2c=2b\)
\(-2a+4b-2c-2b=0\)
\(-2a+2b-2c=0\)
\(đpcm\)
a) Vế trái: Dùng quy tắc chuyển vế
a - b -a - b + 2a - b - 2a + 3b
= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0
Mà Vế phải = 0
Suy ra hằng đẳng thức đúng
b) Tương tự: Vế trái
a + b - c - a +b - c + b +c - a - b + a + c
= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b
Mà vế phải = 2b
Suy ra hằng đẳng thức đúng :D
\(\left(a-b\right)-\left(a+b\right)+\left(2a-b\right)-\left(2a-3b\right)=0\)
biến đổi vế trái ta dược
=\(a-b-a-b+2a-b-2a+3b\)
\(=\left(a-a+2a-2a\right)+\left(-b-b-b+3b\right)\)
\(=-3b+3b\)
\(=0=vp\)
vậy đẳng thức được chứng minh
( a-b)-(a+b)+(2a-b)-(2a-3b)=0
<=> a-b-a-b+2a-b-2a+3b = 0
<=> 0=0
=> ĐPCM
P/s tham khảo nha
Hình như phải là 1-c-2a thì đúng
ta có VT=-(a+b+c)+(b-c)-(a-c-1)=-a-b-c+b-c-a+c+1=-2a-c+1=1-c-2a=VP
vậy.....
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (\(k\in N\)*)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{2bk-3b}{2bk+3b}=\frac{2dk-3d}{2dk+3d}\)
Xét vế trái \(\frac{2a-3b}{2a+3b}=\frac{2bk-3b}{2bk+3b}=\frac{b\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)
Xét vế phải \(\frac{2c-3d}{2c+3d}=\frac{2dk-3d}{2dk+3d}=\frac{d\left(2k-3\right)}{d\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
Đặt ab=cd=kab=cd=k (k∈Nk∈N*)
⇒{a=bkc=dk⇒{a=bkc=dk⇒2bk−3b2bk+3b=2dk−3d2dk+3d⇒2bk−3b2bk+3b=2dk−3d2dk+3d
Xét vế trái 2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)2a−3b2a+3b=2bk−3b2bk+3b=b(2k−3)b(2k+3)=2k−32k+3(1)
Xét vế phải 2c−3d2c+3d=2dk−3d2dk+3d=d(2k−3)d(2k+3)=2k−32k+3(2)
1/ (a - b + c) - (a + c)
= a - b + c - a - c
= -b
2/ (a + b) - (b - a) + c
= a + b - b + a + c
= 2a + c
1. Biến đổi VT ta có: a - b + c - a - c = -b = VP
Vậy đẳng thức dc cm
2. Biến đổi VT ta có: a + b - b + a + c = 2a + c = VP
Vậy đẳng thức dc cm
Ta có : (2a - b) - (a + b) + (a - b) - (2a - 3b)
= 2a - b - a - b + a - b - 2a + 3b
= (2a - 2a)+ (a - a) + (b - b - b + 3b)
= 0 + 0 + 0
= 0
Vậy đẳng thức (2a - b )- (a + b) + (a - b) - (2a - 3b) = 0