K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-1}{1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

21 tháng 5 2018

\(VT=\left(\dfrac{\sqrt{a}}{1-\sqrt{a}}+\dfrac{\sqrt{a}}{1+\sqrt{a}}\right):\dfrac{2\sqrt{a}}{a-1}\)

\(=\left(\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}\left(\sqrt{a}-1\right)}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}\)

\(=\left(\dfrac{-a-\sqrt{a}+a-\sqrt{a}}{a-1}\right).\dfrac{a-1}{2\sqrt{a}}=\dfrac{-2\sqrt{a}}{a-1}.\dfrac{a-1}{2\sqrt{a}}=-1=VP\)

28 tháng 10 2021

a: \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

10 tháng 8 2018

1. \(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right).\left(\sqrt{a}.\dfrac{4}{\sqrt{a}}\right)=\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.4=\dfrac{-64\sqrt{a}}{a-4}\)Nếu nhân tu thứ 2 của phép tính là \(\sqrt{a}-\dfrac{4}{\sqrt{a}}\) thì kết quả của phép tính là -16 nha bạn

10 tháng 8 2018

2.\(\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right).\left(1-\dfrac{1}{\sqrt{a}}\right)=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{-\left(1-\sqrt{a}\right)}{\sqrt{a}}=\dfrac{-2\sqrt{a}}{\left(1+\sqrt{a}\right)\sqrt{a}}=\dfrac{-2}{1+\sqrt{a}}\)\(\left(a>0,a\ne1\right)\)

2 tháng 10 2018

ko biet

7 tháng 10 2018

b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)

\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)

\(=\dfrac{a}{a-b}\)

7 tháng 10 2018

khúc \(\dfrac{a}{a-b}\) sai nhé

\(=\dfrac{a-b}{a-b}=1\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

17 tháng 5 2021
) V T = ( 2 √ 3 − √ 6 √ 8 − 2 − √ 216 3 ) ⋅ 1 √ 6 = ( √ 2 ⋅ √ 2 ⋅ √ 3 − √ 6 √ 2 2 ⋅ 2 − 2 − √ 6 2 .6 3 ) ⋅ 1 √ 6 = ( √ 2 ⋅ √ 6 − √ 6 2 √ 2 − 2 − 6 . √ 6 3 ) ⋅ 1 √ 6 = [ √ 6 ( √ 2 − 1 ) 2 ( √ 2 − 1 ) − 6 √ 6 3 ] ⋅ 1 √ 6 = ( √ 6 2 − 2 √ 6 ) ⋅ 1 √ 6 = ( √ 6 2 − 4 √ 6 2 ) ⋅ 1 √ 6 = ( − 3 2 √ 6 ) ⋅ 1 √ 6 = − 3 2 = − 1 , 5 = V P . b) V T = ( √ 14 − √ 7 1 − √ 2 + √ 15 − √ 5 1 − √ 3 ) : 1 √ 7 − √ 5 = ( √ 7 ⋅ √ 2 − √ 7 1 − √ 2 + √ 5 ⋅ √ 3 − √ 5 1 − √ 3 ) : 1 √ 7 − √ 5 = [ √ 7 ( √ 2 − 1 ) 1 − √ 2 + √ 5 ( √ 3 − 1 ) 1 − √ 3 ] : 1 √ 7 − √ 5 = ( − √ 7 − √ 5 ) ( √ 7 − √ 5 ) = − ( √ 7 + √ 5 ) ( √ 7 − √ 5 ) = − ( 7 − 5 ) = − 2 = V P . c) V T = a √ b + b √ a √ a b : 1 √ a − √ b = √ a ⋅ √ a ⋅ √ b + √ b ⋅ √ b ⋅ √ a √ a b : 1 √ a − √ b = √ a ⋅ √ a b + √ b ⋅ √ a b √ a b : 1 √ a − √ b = √ a b ( √ a + √ b ) √ a b ⋅ ( √ a − √ b ) = ( √ a + √ b ) ⋅ ( √ a − √ b ) = a − b = V P . d) V T = ( 1 + a + √ a √ a + 1 ) ( 1 − a − √ a √ a − 1 ) = ( 1 + √ a ⋅ √ a + √ a √ a + 1 ) ( 1 − √ a ⋅ √ a − √ a √ a − 1 ) = [ 1 + √ a ( √ a + 1 ) √ a + 1 ] [ 1 − √ a ( √ a − 1 ) √ a − 1 ] = ( 1 + √ a ) ( 1 − √ a ) = 1 − ( √ a ) 2 = 1 − a = V P
19 tháng 5 2021

a) VT=\left(\dfrac{2 \sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}VT=(822363216)61

=\left(\dfrac{\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{3}-\sqrt{6}}{\sqrt{2^{2} \cdot 2}-2}-\dfrac{\sqrt{6^{2} .6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}=(22222236362.6)61

=\left(\dfrac{\sqrt{2} \cdot \sqrt{6}-\sqrt{6}}{2 \sqrt{2}-2}-\dfrac{6 . \sqrt{6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}=(22226636.6)61

=\left[\dfrac{\sqrt{6}(\sqrt{2}-1)}{2(\sqrt{2}-1)}-\dfrac{6 \sqrt{6}}{3}\right] \cdot \dfrac{1}{\sqrt{6}}=[2(21)6(21)366]61

=\left(\dfrac{\sqrt{6}}{2}-2 \sqrt{6}\right) \cdot \dfrac{1}{\sqrt{6}}=(2626)61

=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4 \sqrt{6}}{2}\right) \cdot \dfrac{1}{\sqrt{6}}=(26246)61

=\left(\dfrac{-3}{2} \sqrt{6}\right) \cdot \dfrac{1}{\sqrt{6}}=(236)61

=-\dfrac{3}{2}=-1,5=V P=23=1,5=VP.
b) VT=\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right): \dfrac{1}{\sqrt{7}-\sqrt{5}}VT=(12147+13155):751

=\left(\dfrac{\sqrt{7} \cdot \sqrt{2}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{5} \cdot \sqrt{3}-\sqrt{5}}{1-\sqrt{3}}\right): \dfrac{1}{\sqrt{7}-\sqrt{5}}=(12727+13535):751

=\left[\dfrac{\sqrt{7}(\sqrt{2}-1)}{1-\sqrt{2}}+\dfrac{\sqrt{5}(\sqrt{3}-1)}{1-\sqrt{3}}\right]: \dfrac{1}{\sqrt{7}-\sqrt{5}}=[127(21)+135(31)]:751

=(-\sqrt{7}-\sqrt{5})(\sqrt{7}-\sqrt{5})=(75)(75)

=-(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=(7+5)(75)

=-(7-5)=-2=VP=(75)=2=VP.

c) V T=\dfrac{a \sqrt{b}+b \sqrt{a}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}VT=abab+ba:ab1

=\dfrac{\sqrt{a} \cdot \sqrt{a} \cdot \sqrt{b}+\sqrt{b} \cdot \sqrt{b} \cdot \sqrt{a}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}=abaab+bba:ab1

=\dfrac{\sqrt{a} \cdot \sqrt{a b}+\sqrt{b} \cdot \sqrt{a b}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}=abaab+bab:ab1

=\dfrac{\sqrt{a b}(\sqrt{a}+\sqrt{b})}{\sqrt{a b}} \cdot(\sqrt{a}-\sqrt{b})=abab(a+b)(ab)

=(\sqrt{a}+\sqrt{b}) \cdot(\sqrt{a}-\sqrt{b})=(a+b)(ab)

=a-b=V P=ab=VP.

d) VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)VT=(1+a+1a+a)(1a1aa)

=\left(1+\dfrac{\sqrt{a} \cdot \sqrt{a}+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a} \cdot \sqrt{a}-\sqrt{a}}{\sqrt{a}-1}\right)=(1+a+1aa+a)(1a1aaa)

=\left[1+\dfrac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1}\right]\left[1-\dfrac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}\right]=[1+a+1a(a+1)][1a1a(a1)]

=(1+\sqrt{a})(1-\sqrt{a})=(1+a)(1a)

=1-(\sqrt{a})^{2}=1-a=V P=1(a)2=1a=VP

12 tháng 8 2018

A = \(\left(\dfrac{a-1}{\sqrt{a}-1}-2\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}+1\right)=\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-2\right)\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+1\right)=\left(\sqrt{a}+1-2\right)\left(\sqrt{a}+1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)=a-1\)

\(B=\left(\dfrac{a\sqrt{a}-a}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}=\left(\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}=\left(\dfrac{a}{\sqrt{a}}-\dfrac{a-\sqrt{a}+1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}=\dfrac{\left(\sqrt{a}-1\right)\left(a-2\right)}{\sqrt{a}\left(a+2\right)}\)

\(C=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{a}{a-1}\right):\left(\sqrt{a}-\dfrac{\sqrt{a}}{\sqrt{a}+1}\right)=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\dfrac{a}{a-1}\right):\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)-\sqrt{a}}{\sqrt{a}+1}\right)=\dfrac{\sqrt{a}}{a-1}:\dfrac{a}{\sqrt{a}+1}=\dfrac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}+1}{a}=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

\(D=\dfrac{a+\sqrt{a}}{\sqrt{a}}+\dfrac{a+4}{\sqrt{a}+2}=\sqrt{a}+1+\dfrac{a+4}{\sqrt{a}+2}=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}+2+a+4}{\sqrt{a}+2}=\dfrac{a+2\sqrt{a}+\sqrt{a}+2+a+4}{\sqrt{a}+2}=\dfrac{2a+3\sqrt{a}+6}{\sqrt{a}+2}\)

\(E=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}+\dfrac{1-\sqrt{a}}{a+\sqrt{a}}\right)=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)+1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\cdot\dfrac{a-1+1-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{\left(\sqrt{a}-1\right)\cdot\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}\cdot\sqrt{a}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}}\)