Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng hàng đẳng thức A^2-B^2=(A-B)(A+B) nhé còn phần b chuyển vế sang rồi dùng HĐT là được
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)
\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)+\left(105-107^2\right)+\left(94^2-96^2\right)=0\)
\(\Leftrightarrow2\left(100+98+103+101-105-107-94-96\right)=0\)
\(\Leftrightarrow2\times0=0\)(ĐPCM)
1) ta có \(\left(x+y\right)^2=x^2+2xy+y^2.\)
\(=\left(x^2+y^2\right)+2xy\)
\(=20+2.8\)(theo giả thiết x^2+y^2=20 , xy=8)
\(=36\)
Vậy với x^2+y^2=20, xy=8 thì (x+y)^2=36
2) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Rightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^2\right)^2-1^2\right]\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^4\right)^2-1^2\right]\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left[\left(2^8\right)^2-1^2\right]\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}\right)^2-1^2\)
\(\Leftrightarrow3M=2^{32}-1\)
\(\Rightarrow M=\frac{2^{32}-1}{3}\)
RÚT GỌN BIỂU THỨC N BẠN LÀM TƯƠNG TỰ NHA
\(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Rightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(...\)
\(...\)
Kết quả rút gọn \(N=\frac{7^{32}-1}{3}\)
\(VT=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=...=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
Đề sai nha bạn mình sửa luôn
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{32}{1-x^{32}}=VP\left(đpcm\right)\)
dùng hằng đẳng thức A^2 - B^2 = (A - B)(A + B) nhé phần b chuyển vế sang rồi dùng hđt là Okay
\(2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1< 3^{32}\)
Gợi ý: Sử dụng liên tục tính chất \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
2(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)
= (34 - 1)(34 + 1)(38 + 1)(316 + 1)
= (38 - 1)(38 + 1)(316 + 1)
= (316 - 1)(316 + 1)
= 332 - 1 < 332
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=3(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)=2^32-1