K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 7 2023

Đề thiếu. Bạn xem lại đề.

21 tháng 7 2023

Mik viết chx xog mà lỡ tay bấm tạo câu hỏi ạ

17 tháng 8 2018

ta có \(x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)\)

                                              \(=x^3+2x^2+x^2+2x\)

                                               \(=x^3+3x^2+2x\)( đpcm )

học tốt

17 tháng 8 2018

Biến đổi VT ta có :

\(x\left(x+1\right)\left(x+2\right)\)

\(=\left(x^2+x\right)\left(x+2\right)\)

\(=x^3+2x^2+x^2+2x\)

\(=x^3+\left(2x^2+x^2\right)+2x\)

\(=x^3+3x^2+2x=VP\)

Vậy \(x\left(x+1\right)\left(x+2\right)=x^3+3x^2+2x\)

20 tháng 3 2019

24 tháng 5 2019

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

2 tháng 12 2019

20 tháng 11 2021

\(\dfrac{3-x}{3+x}=\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\dfrac{x^2-6x+9}{9-x^2}\)

2 tháng 1 2019

\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Mà theo Cô-si ta có:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)

\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c

2 tháng 1 2019

cảm ơn hihi

\(\left(-a-b\right)^2=\left(-a\right)^2-2.\left(-a\right).b+b^2\)

\(=a^2+2ab+b^2\)(1)

\(\left(a+b\right)^2=a^2+2ab+b^2\)(2)

Từ (1) và (2) => \(\left(-a-b\right)^2=\left(a+b\right)^2\)

4 tháng 9 2017

       \(\left(-a-b\right)\)\(2\)\(=\)\(\left(-a\right)\)\(2\)\(-\)\(2\)\(.\)\(\left(-a\right)\)\(.\)\(b\)\(+\)\(b^2\)

\(=\)\(a^2\)\(+\)\(2\)\(.\)\(ab\)\(+\)\(b^2\)\(\left(1\right)\)

\(\left(a+b\right)\)\(=\)\(a\)\(+\)\(2\)\(.\)\(ab\)\(+\)\(b\)\(\left(2\right)\)

      Từ \(\left(1\right)\)và \(\left(2\right)\)ta có :

\(\left(-a-b\right)\)\(^2\)\(=\)\(\left(a+b\right)\)\(^2\)