Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. VT:(x-y)-(x-z)
= x-y-x+z
= z-y
VP:(z+x)-(y+x)
=z+x-y-x
=z-y
=> VT=VP => đpcm.
b. VT:(x-y+z)-(y+z-x)-(x-y)
= x-y+z-y-z+x-x+y
= x-y
VP:(z-y)-(z-x)
= z-y-z+x
= x-y
=> VT=VP => đpcm.
c. VT: a(b+c)-b(a-c)
=ab+ac-ab+bc
= ac+bc
VP: (a+b)c
= ac+bc
=> VT=VP => đpcm.
d. VT: a(b-c)-a(b+d)
= ab-ac-ab-ad
= -ac-ad
VP: -a(c+d)
= -ac-ad
=> VT=VP => đpcm
tương tự...
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
b) Ta có \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
a) Vế trái: Dùng quy tắc chuyển vế
a - b -a - b + 2a - b - 2a + 3b
= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0
Mà Vế phải = 0
Suy ra hằng đẳng thức đúng
b) Tương tự: Vế trái
a + b - c - a +b - c + b +c - a - b + a + c
= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b
Mà vế phải = 2b
Suy ra hằng đẳng thức đúng :D
a) Giải:
Ta có:
\(ab-ac+bc-c^2=-1\)
\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)
Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)
Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau
\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)
Suy ra \(b=-a\) tức \(a\) và \(b\) là hai số đối nhau
Vậy \(a\) và \(b\) là hai số đối nhau (Đpcm)
b) Giải:
Ta có:
Từ \(a+b=c+d\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
\(\Rightarrow ab-c\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2=1\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)
Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))
Hay \(a=b\) (Đpcm)
SOS
a(b-c)-a(b+d)=-a(c+d)
Còn mấy bài mình ko làm được nữa tí mình gửi sau