K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(1+tan^2x=1+\left(\dfrac{sinx}{cosx}\right)^2\)

\(=1+\dfrac{sin^2x}{cos^2x}=\dfrac{cos^2x+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}\)

b: \(tanx+cotx=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\)

\(=\dfrac{sin^2x+cos^2x}{sinx\cdot cosx}=\dfrac{1}{sinx\cdot cosx}\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

19 tháng 7 2017

vì sao cosx - cos3x = -2sin2xsin(-x) = 4sin\(^2\)xcosx

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

4 tháng 4 2017

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

Giải bài 2 trang 176 sgk Đại Số 11 | Để học tốt Toán 11

a: \(\Leftrightarrow\tan\left(x-\dfrac{\Pi}{5}\right)=-\cot x=\tan\left(x+\dfrac{\Pi}{2}\right)\)

\(\Leftrightarrow x-\dfrac{\Pi}{5}=x+\dfrac{\Pi}{2}+k\Pi\)

\(\Leftrightarrow k\Pi=-\dfrac{7}{10}\Pi\)

hay k=-7/10(vô lý)

b: \(\Leftrightarrow\cos x=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{3}+k2\Pi\\x=-\dfrac{\Pi}{3}+k2\Pi\end{matrix}\right.\)

9 tháng 4 2017

a) Đặt t = cos, t ∈ [-1 ; 1] thì phương trình trở thành

(1 - t2) - 2t + 2 = 0 ⇔ t2 + 2t -3 = 0 ⇔

Phương trình đã cho tương đương với

cos = 1 ⇔ = k2π ⇔ x = 4kπ, k ∈ Z.

b) Đặt t = sinx, t ∈ [-1 ; 1] thì phương trình trở thành

8(1 - t2) + 2t - 7 = 0 ⇔ 8t2 - 2t - 1 = 0 ⇔ t ∈ {}.

Các nghiệm của phương trình đã cho là nghiệm của hai phương trình sau :

Đáp số : x = + k2π; x = + k2π;

x = arcsin() + k2π; x = π - arcsin() + k2π, k ∈ Z.

c) Đặt t = tanx thì phương trình trở thành 2t2 + 3t + 1 = 0 ⇔ t ∈ {-1 ; }.

Vậy

d) Đặt t = tanx thì phương trình trở thành

t - + 1 = 0 ⇔ t2 + t - 2 = 0 ⇔ t ∈ {1 ; -2}.

Vậy



18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)