Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :-5x4< hoặc = 0(*)
-9x2< hoặc = 0(**)
-4<0(***)
TỪ (*);(**);(***) suy ra -5x4-9x2-4< hoặc = -4
Vậy đa thức N(x)=-5x4-9x2-4 là vô nghiệm (không có nghiệm)
Vì x4 \(\ge\) 0 với mọi x \(\in\) R
3x2 \(\ge\) 0 với mọi x \(\in\) R
=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R
=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R
=>P(x) vô nghiệm
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)
\(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
= \(\left(x^2+2\right)\left(x^2+x+1\right)\)
Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)
Suy ra , đa thức trên vô nghiệm
a) P(x)=3x2 - 5x3 +x + 2x3 - x - 4 + 3x3 + x4 + 7
= 3x2 - 5x3 + 2x3 + 3x3 + x - x + x4 - 4 + 7
= 3x2 + 0 + 0 + x4 + 3
= 3x2 + x4 + 3
b) Vì x2 > hoặc = 0 vs mọi x thuộc R
=)) 3x2 > hoặc = 3 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > hoặc = x4 + 6 vs mọi x thuộc R
=)) 3x2 + x4 + 3 > 0
Vậy đa thức 3x2 + x4 + 3 vô nghiệm
2 thieu đề
Bạn Phan Cả Phát làm sai rồi, vì 3x2 có 2 trường hợp: 3x2 > 0 hoặc 3x2 = 0 vì x2 có thể = 0 được. VÌ vậy nếu bạn bảo 3x2 >/= 3 là sai
Sửa đề \(2x^2-x^2+9\)
\(=x^2+9\)
Do \(x^2\ge0\)
\(\Rightarrow x^2+9\ge9\)
Vậy đa thức trên vô nghiệm
\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)
Where is VT ?
\(x^2+2006+x\)
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{2}+\frac{4011}{2}\)
\(=x.\left(x+\frac{1}{2}\right)+\frac{1}{2}.\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)
\(=\left(x+\frac{1}{2}\right).\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}\)
\(\text{Vì }\left(x+\frac{1}{2}\right)^2\ge0\text{ nên }\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}>0\)
\(\text{Hay }x^2+2006+x>0\)
\(\text{Vậy đa thức }x^2+2006+x\text{ vô nghiêm}\)
trời ơi ! cái này thì tui biết thừa ! chỉ cần coppy về rùi bấm vào văn bản máy fx rồi tự làm trên máy cũng được !
x8-x7+x4-x+1
=( x8-x7) -(x-1)+x4
=x(x-1)-(x-1)+x4
=(x-1)(x-1)+x4
=(x-1)2+x4
mà (x-1)2\(\ge\)0
x4 \(\ge\)0
=> (x-1)2+x4 \(\ge\) 0
Vậy x8-x7+x4-x+1 \(\ge\) 0
=> đa thức trên vô nghiệm
Ta có
x^2 luôn >= 0 với mọi x
x>=0 với mọi x
1>0
Nên đa thức P(x) vô nghiệm
Ta có :x2+5x+4=0
=>x2+x+4x+4=0
=>x(x+1)+4(x+1)=0
=>(x+1)(x+4)=0
=>\(\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)