Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x2 + 2x+3 ) ( 3x2 - 2x + 1 ) - 3x2 ( x2 + 2) - 4x ( x2 - 1 )
=x2( 3x2 - 2x + 1 )+2x( 3x2 - 2x + 1 )+3( 3x2 - 2x + 1 )-3x4-6x2-4x3+4x
=3x4-2x3+x2+6x3-4x2+2x+9x2-6x+3-3x4-4x3-6x2+4x
=3
M = ( x + 1 )3 - x3 + 1 - 3x( x + 1 )
= x3 + 3x2 + 3x + 1 - x3 + 1 - 3x2 - 3x
= 2
Vậy M không phụ thuộc vào biến ( đpcm )
N = ( 2x - 1 )3 - 6x( 2x - 1 )2 + 12x2( 2x - 1 ) - 8x3
= [ ( 2x - 1 ) - 2x ]3 ( HĐT số 4 )
= [ 2x - 1 - 2x ]3
= [ -1 ]3 = -1
Vậy N không phụ thuộc vào biến ( đpcm )
A = ( x - 5 )( x2 + 5x + 25 ) - x3 + 2 ( đã sửa )
= x3 - 53 - x3 + 2
= x3 - 125 - x3 + 2
= -123 ( không phụ thuộc vào biến )
=> đpcm
B = ( 2x + 3 )( 4x2 - 6x + 9 ) - 8x( x2 + 2 ) + 16x + 5
= ( 2x )3 + 33 - 8x3 - 16x + 16x + 5
= 8x3 + 27 - 8x3 - 16x + 16x + 5
= 27 + 5 = 32 ( không phụ thuộc vào biến )
=> đpcm
A=(x-3)(x^2+3x+9)-x(x^2-2)-2(x-1) nhân vào
A=x^3+3x^2-9x-3x^2-9x-27-x^3+2x-2x+2 khử hết các hạng tử đồng dạng
A=-27+2
A=-25
Sau khi rút gọn biểu thức A không có biến x nên A ko phụ thuộc vào x
Mk k ghi đề nên lm luôn nhé:
a) A = (x3 - 1) + (x3 - 3x2.2 + 3.x.22 - 23) - 2(x3 + 1) + 6(x2 - 2x + 1)
= x3 - 1 + x3 - 6x2 + 12x - 8 - 2x3 - 2 + 6x2 - 12x + 6
= 5
Vậy biểu thức A không phụ thuộc vào giá trị của biến x
b) B = (27x3 - x3) - (x3 + 3.x2.2 + 3.x.22 + 23) + 2(x3 + 8) + 6x2 + 12x
= 27x3 - x3 - x3 - 6x2 - 12x - 8 + 2x3 + 16 + 6x2 + 12x
= 27x3 + 8
*câu b k biết đề có gì sai sót k nên bn tự sửa lại nhé*
*câu b k chứng minh đc*
A = ( x - 1 )( x2 + x + 1 ) + ( x - 2 )3 - 2( x + 1 )( x2 - x + 1 ) + 6( x - 1 )2
= x3 - 1 + x3 - 6x2 + 12x - 8 - 2( x3 + 1 ) + 6( x2 - 2x + 1 )
= 2x3 - 6x2 + 12x - 9 - 2x3 - 2 + 6x2 - 12x + 6
= -5 không phụ thuộc vào biến
=> đpcm
B = ( 3 - x )( x2 + 3x + 9 ) - ( x + 2 )3 + 2( x + 2 )( 4 - 2x + x2 ) + 6x( x + 2 ) < đã sửa một vài chỗ >
= -( x - 3 )( x2 + 3x + 9 ) - ( x3 + 6x2 + 12x + 8 ) + 2( x3 + 8 ) + 6x2 + 12x
= -( x3 - 27 ) - x3 - 6x2 - 12x - 8 + 2x3 + 16 + 6x2 + 12x
= 27 - x3 + x3 - 8 + 16
= 35 không phụ thuộc vào biến
=> đpcm
a,Ta có P=(x+2)3+(x-2)3-2x(x2+12)
=x3+6x2+12x+8+x3-6x2+12x-8-2x3-24x
=0
Vậy giá trị của đa thức P không phụ thuộc vào biến x
b,Ta có Q=(x-1)3-(x+1)3+6(x+1)(x-1)
=(x3-3x2+3x-1)-(x3+3x2+3x+1)+6(x2-1)
=x3-3x2+3x-1-x3-3x2-3x-1+6x2-6
=-8
Vậy giá trị của đa thức Q không phụ thuộc vào biến x
a, P=(x+2)3+(x-2)3-2x(x2+12)
=x3+6x2+12x+8+x3-6x2+12x-8-2x3-24x
=(x3+x3-2x3)+(6x2-6x2)+(12x+12x-24x)+(8-8)
=0+0+0+0
=0.Vậy...
b, Q=(x-1)3-(x+1)3+6(x+1)(x-1)
=x3-3x2+3x-1-x3-3x2-3x-1+6x2-6
=(x3-x3)-(-3x2-3x2+6x2)+(3x-3x)-1-1-6
=0-0+0-8
=-8.Vậy...
Bài 1:
a) \(2x^2y-xy=xy\left(2x-1\right)\)
b)\(2x^2-x-2y^2-y=\left(2x^2-2y^2\right)-\left(x+y\right)\)
\(=2\left(x^2-y^2\right)-\left(x+y\right)\)
\(=2\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-2y-1\right)\)
Bài 2:
a)\(x^3-\frac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x\left(x-\frac{1}{3}\right)\left(x+\frac{1}{3}\right)=0\)
\(\Rightarrow x=0\text{ hoặc }x-\frac{1}{3}=0\Leftrightarrow x=\frac{1}{3}\text{ hoặc }x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{3}\)
Vậy...
b)\(\left(x+1\right)^2=5x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-5x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-5x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-4x+1\right)=0\)
\(\Leftrightarrow-\left(x+1\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\4x=1\Leftrightarrow x=\frac{1}{4}\end{cases}}}\)
Vậy...
\(=\left[\left(x^2+1\right)+x\right]^2-\left(x^2+1\right)^2-x\left(2x^2+x+2\right)\)
\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2-\left(x^2+1\right)^2-x\left(2x^2+x+2\right)\)
\(=2x\left(x^2+1\right)+x^2-x\left(2x^2+x+2\right)\)
\(=2x^3+2x+x^2-2x^2-x^2-2x=0\)