K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

Ta có 

\(a(a+b)(a+c)(a+b+c) +b^2c^2= (a^2+ab+ac +bc)(a^2+ab+ac) +b^2c^2\\= (a^2+ab+ac)^2 +bc.(a^2+ab+ac) +b^2c^2\)

Ta quy về bài toán chứng mình A^2+AB+B^2 >= 0 .....

a:

\(a^3+a^2c-abc+b^2c+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)(vì a+b=c=0)

câu b bn xem ở link này nha!

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

6 tháng 7 2017

Bạn có thể viết lại đề được không?Mình vẫn chưa rõ lắm.^^

NV
29 tháng 6 2019

\(S=\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=\frac{a^2}{ab+2ac}+\frac{b^2}{bc+2ab}+\frac{c^2}{ac+2bc}\)

\(\Rightarrow S\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)

Dấu "=" xảy ra khi \(a=b=c\)