Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB+4=\left(11...1+4\right)\left(11...1+8\right)+4=\) (có n+1 chữ số 1)
\(=11...1^2+12x11...1+36=\left(11...1+2x6x11...1+6^2\right)=\)
\(=\left(11...1+6\right)^2=11...7^2\) (có n chữ số 1)
a) Ta có: \(a=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt \(n^2+3n+1=t\)(1)
Khi đó: \(a=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
\(\Rightarrow\) a là số chính phương
b) Để a=121 thì \(t^2=121\)\(\Rightarrow t=\pm11\)
+ Với t=11 thì (1) \(\Leftrightarrow n^2+3n+1=11\Leftrightarrow n^2+3n-10=0\)
\(\Leftrightarrow\left(n-2\right)\left(n+5\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=-5\end{cases}}\)
+ Với n=-11 thì (1)\(\Leftrightarrow n^2+3n+1=-11\Leftrightarrow n^2+3n+12=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2+\frac{39}{4}=0\) ( vô lý)
Do đó, pt vo nghiệm
Vậy để a=121 thì n =2 hoặc n=-5
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2.
Điều này mâu thuẫn với giả thiết a + b < 2. Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ. Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.
a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2. Điều này mâu thuẫn với giả thiết a + b < 2.
Vậy một trong hai số a và b phải nhỏ hơn 1.
b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ.
Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.